public 01:34:47

Zachary Bezemek : Interacting particle systems in multiscale environments: asymptotic analysis

  -   Uploaded by schrett ( 4 Views )

This talk is an overview of my thesis work, which consists of 3 projects exploring the effect of multiscale structure on a class of interacting particle systems called weakly interacting diffusions. In the absence of multiscale structure, we have a collection of N particles, with the dynamics of each being described by the solution to a stochastic differential equation (SDE) whose coefficients depend on that particle's state and the empirical measure of the full particle configuration. It is well known in this setting that as N approaches infinity, the particle system undergoes the ``propagation of chaos,'' and its corresponding sequence of empirical measures converges to the law of the solution to an associated McKean-Vlasov SDE. Meanwhile, in our multiscale setting, the coefficients of the SDEs may also depend on a process evolving on a timescale of order 1/\epsilon faster than the particles. As \epsilon approaches 0, the effect of the fast process on the particles' dynamics becomes deterministic via stochastic homogenization. We study the interplay between homogenization and the propagation of chaos via establishing large deviations and moderate deviations results for the multiscale particles' empirical measure in the combined limit as N approaches infinity and \epsilon approaches 0. Along the way, we derive rates of homogenization for slow-fast McKean-Vlasov SDEs.

public 01:34:43

Ngo Bao Chau : On the generalized Hitchin fibration and regular quotient

  -   Uploaded by schrett ( 4 Views )

public 01:34:43

Tyler Bongers : Teaching Sample

  -   Uploaded by schrett ( 19 Views )

public 01:34:56

Casey Diekman : Data Assimilation and Dynamical Systems Analysis of Circadian Rhythmicity and Entrainment

  -   Uploaded by schrett ( 34 Views )

Circadian rhythms are biological oscillations that align our physiology and behavior with the 24-hour environmental cycles conferred by the Earth’s rotation. In this talk, I will discuss two projects that focus on circadian clock cells in the brain and the entrainment of circadian rhythms to the light-dark cycle. Most of what we know about the electrical activity of circadian clock neurons comes from studies of nocturnal (night-active) rodents, hindering the translation of this knowledge to diurnal (day-active) humans. In the first part of the talk, we use data assimilation and patch-clamp recordings from the diurnal rodent Rhabdomys pumilio to build the first mathematical models of the electrophysiology of circadian neurons in a day-active species. We find that the electrical activity of circadian neurons is similar overall between nocturnal and diurnal rodents but that there are some interesting differences in their responses to inhibition. In the second part of the talk, we use tools from dynamical systems theory to study the reentrainment of a model of the human circadian pacemaker following perturbations that simulate jet lag. We show that the reentrainment dynamics are organized by invariant manifolds of fixed points of a 24-hour stroboscopic map and use these manifolds to explain a rapid reentrainment phenomenon that occurs under certain jet lag scenarios.