Curtis Porter : CRash CouRse in CR Geometry
- Graduate/Faculty Seminar,Uploaded Videos ( 2252 Views )CR geometry studies real hypersurfaces in complex vector spaces and their generalizations, CR manifolds. In many cases of interest to complex analysis and PDE, CR manifolds can be considered ``curved versions" of homogeneous spaces according to Elie Cartan’s generalization of Klein’s Erlangen program. Which homogeneous space is the ``flat model" of a CR manifold depends on the Levi form, a tensor named after a mathematician who used it to characterize boundaries of pseudoconvex domains. As in the analytic setting, the Levi form plays a central role in the geometry of CR manifolds, which we explore in relation to their homogeneous models.
Zoe Huang : Motion by mean curvature in interacting particle systems
- Probability,Uploaded Videos ( 1254 Views )There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
Holden Lee : Recovering sparse Fourier signals, with application to system identification
- Graduate/Faculty Seminar,Uploaded Videos ( 1090 Views )The problem of recovering a sparse Fourier signal from samples comes up in signal processing, imaging, NMR spectroscopy, and machine learning. Two major challenges involve dealing with off-grid frequencies, and dealing with signals lacking separation between frequencies. Without a minimum separation condition, the problem of frequency recovery is exponentially ill-conditioned, but the signal can still be efficiently recovered in an "improper" manner using an appropriate filter. I will explain such an algorithm for sparse Fourier recovery, and the theory behind why it works - involving some clever analytic inequalities for Fourier-sparse signals. Finally, I will discuss recent work with Xue Chen on applying these ideas to system identification. Identification of a linear dynamical system from partial observations is a fundamental problem in control theory. A natural question is how to do so with statistical rates depending on the inherent dimensionality (or order) of the system, akin to the sparsity of a signal. We solve this question by casting system identification as a "multi-scale" sparse Fourier recovery problem.
Yiming Zhong : Fast algorithm for Radiative transport
- Graduate/Faculty Seminar,Uploaded Videos ( 991 Views )This talk consists of two aspects about solving the radiative transport through the integral formulation. The radiative transport equation has been numerically studied for many years, the equation is difficult to solve due to its high dimensionality and its hyperbolic nature, in recent decades, the computers are equipped with larger memories so it is possible to deal with the full-discretization in phase space, however, the numerical efficiency is quite limited because of many issues, such as iterative scheme, preconditioning, discretization, etc. In this talk, we first discuss about the special case of isotropic scattering and its integral formulation, then walk through the corresponding fast algorithm for it. In the second part, we try to trivially extend the method to anisotropic case, and talk about the method’s limitation and some perspectives in both theory and numerics.