## Curtis Porter : CRash CouRse in CR Geometry

- Graduate/Faculty Seminar,Uploaded Videos ( 2252 Views )CR geometry studies real hypersurfaces in complex vector spaces and their generalizations, CR manifolds. In many cases of interest to complex analysis and PDE, CR manifolds can be considered ``curved versions" of homogeneous spaces according to Elie Cartan’s generalization of Klein’s Erlangen program. Which homogeneous space is the ``flat model" of a CR manifold depends on the Levi form, a tensor named after a mathematician who used it to characterize boundaries of pseudoconvex domains. As in the analytic setting, the Levi form plays a central role in the geometry of CR manifolds, which we explore in relation to their homogeneous models.

## Margaret Regan : Using homotopy continuation to solve parametrized polynomial systems in applications

- Graduate/Faculty Seminar,Uploaded Videos ( 1832 Views )Many problems that arise in mathematics, science, and engineering can be formulated as solving a parameterized system of polynomial equations which must be solved for given instances of the parameters. One way to solve these systems is to use a common technique within numerical algebraic geometry called homotopy continuation. My talk will start with background on homotopy continuation and parametrized polynomial systems, followed by applications to problems in computer vision and kinematics. Of these, I will first present a new approach which uses locally adaptive methods and sparse matrix calculations to solve parameterized overdetermined systems in projective space. Examples will be provided in 2D image reconstruction to compare the new methods with traditional approaches in numerical algebraic geometry. Second, I will discuss a new definition of monodromy action over the real numbers which encodes tiered characteristics regarding real solutions. Examples will be given to show the benefits of this definition over a naive extension of the monodromy group (over the complex numbers). In addition, an application in kinematics will be discussed to highlight the computational method and impact on calibration.

## Oliver Tough : The Fleming-Viot Particle System with McKean-Vlasov dynamics

- Probability,Uploaded Videos ( 1332 Views )Quasi-Stationary Distributions (QSDs) describe the long-time behaviour of killed Markov processes. The Fleming-Viot particle system provides a particle representation for the QSD of a Markov process killed upon contact with the boundary of its domain. Whereas previous work has dealt with killed Markov processes, we consider killed McKean-Vlasov processes. We show that the Fleming-Viot particle system with McKean-Vlasov dynamics provides a particle representation for the corresponding QSDs. Joint work with James Nolen.

## Roman Vershynin : Mathematics of synthetic data and privacy

- Probability,Uploaded Videos ( 1110 Views )An emerging way to protect privacy is to replace true data by synthetic data. Medical records of artificial patients, for example, could retain meaningful statistical information while preserving privacy of the true patients. But what is synthetic data, and what is privacy? How do we define these concepts mathematically? Is it possible to make synthetic data that is both useful and private? I will tie these questions to a simple-looking problem in probability theory: how much information about a random vector X is lost when we take conditional expectation of X with respect to some sigma-algebra? This talk is based on a series of papers with March Boedihardjo and Thomas Strohmer.

## David Aldous: Probability Seminar

- Probability,Uploaded Videos ( 649 Views )David Aldous, Probability Seminar Sept 30, 2021 TITLE: Can one prove existence of an infectiousness threshold (for a pandemic) in very general models of disease spread? ABSTRACT: Intuitively, in any kind of disease transmission model with an infectiousness parameter, there should exist a critical value of the parameter separating a very likely from a very unlikely resulting pandemic. But even formulating a general conjecture is challenging. In the most simplistic model (SI) of transmission, one can prove this for an essentially arbitrary large weighted contact network. The proof for SI depends on a simple lemma concerning hitting times for increasing set-valued Markov processes. Can one extend to SIR or SIS models over similarly general networks, where the lemma is no longer applicable?

## Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.

- Geometry and Topology,Uploaded Videos ( 315 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.