Quicklists
public 01:34:46

Paul Bendich : Topology and Geometry for Tracking and Sensor Fusion

  -   Graduate/Faculty Seminar ( 205 Views )

Many systems employ sensors to interpret the environment. The target-tracking task is to gather sensor data from the environment and then to partition these data into tracks that are produced by the same target. The goal of sensor fusion is to gather data from a heterogeneous collection of sensors (e.g, audio and video) and fuse them together in a way that enriches the performance of the sensor network at some task of interest. This talk summarizes two recent efforts that incorporate mildly sophisticated mathematics into the general sensor arena, and also comments on the joys and pitfalls of trying to apply math for customers who care much more about the results than the math. First, a key problem in tracking is to 'connect the dots:' more precisely, to take a piece of sensor data at a given time and associate it with a previously-existing track (or to declare that this is a new object). We use topological data analysis (TDA) to form data-association likelihood scores, and integrate these scores into a well-respected algorithm called Multiple Hypothesis Tracking. Tests on simulated data show that the TDA adds significant value over baseline, especially in the context of noisy sensor data. Second, we propose a very general and entirely unsupervised sensor fusion pipeline that uses recent techniques from diffusion geometry and wavelet theory to compress and then fuse time series of arbitrary dimension arising from disparate sensor modalities. The goal of the pipeline is to differentiate classes of time-ordered behavior sequences, and we demonstrate its performance on a well-studied digit sequence database. This talk represents joint work with many people. including Chris Tralie, Nathan Borggren, Sang Chin, Jesse Clarke, Jonathan deSena, John Harer, Jay Hineman, Elizabeth Munch, Andrew Newman, Alex Pieloch, David Porter, David Rouse, Nate Strawn, Adam Watkins, Michael Williams, Lihan Yao, and Peter Zulch.

public 01:14:59

Dong Yao : Two problems in probability theory

  -   Graduate/Faculty Seminar ( 197 Views )

This talk will be concerned with two problems. The first is the zeros of the derivatives of. Kac random polynomials K_n, which is a random polynomial with i.i.d. coefficients. It has been shown that the empirical measure of zeros of K_n will converge to the uniform measure on the unit circle of complex plane. Same convergence holds true for nay fixed order of derivative of K_n. In a joint work with Renjie Feng, we show if we consider the N_n-th order of derivative of K_n, then asymptotic behavior of empirical measure of this derivative will depend on the limit of \frac{N_n}{n}. In particular, as long as this ratio is greater than 0, the phenomenon of ‘zeros clustering around unit circleÂ’ breaks down. The second talk is about Average Nearest Neighbor Degree (ANND), which is a measure for the degree-degree correlation for complex network. We shall be concerned with the probabilistic properties of ANND in the configuration model. We prove if the variable X generating the network has order of moment larger than 2, then the ANND(k) will converge uniformly to μ2/μ1, where μ2 is the second moment of X, and μ1 is the first moment. For the case that X has infinite variance, we show the pointwise (i.e., for fixed k) scaled convergence of ANND(k) to a stable random variable. This is joint work with Nelly Litvak and Pim van der Hoorn. More recently, Clara Stegehuis showed that when X is sample from the Pareto distribution, then one can obtain a complete spectrum of ANND(k) for the erased configuration model.

public 01:34:47

Paul Bendich : Persistance!

  -   Graduate/Faculty Seminar ( 177 Views )

No abstract yet.

public 01:49:41

Mark Stern : Grant Workshop

  -   Graduate/Faculty Seminar ( 161 Views )

public 01:34:29

Harold Layton : Irregular Flow Oscillations in the Nephrons of Spontaneously Hypertensive Rats

  -   Graduate/Faculty Seminar ( 153 Views )

The nephron is the functional unit of the kidney. The flow rate in each nephron is regulated, in part, by tubuloglomerular feedback, a negative feedback loop. In some parameter regimes, this feedback system can exhibit oscillations that approximate limit-cycle oscillations. However, nephron flow in spontaneously hypertensive rats (SHR) can exhibit highly irregular oscillations similar to deterministic chaos. We used a mathematical model of tubuloglomerular feedback (TGF) to investigate potential sources of the irregular oscillations and the associated complex power spectra in SHR. A bifurcation analysis of the TGF model equation was performed by finding roots of the characteristic equation, and numerical simulations of model solutions were conducted to assist in the interpretation of the analysis. Four potential sources of spectral complexity in SHR were identified: (1) bifurcations that produce qualitative changes in solution type, leading to multiple spectrum peaks and their respective harmonic peaks; (2) continuous lability in delay parameters, leading to broadening of peaks and their harmonics; (3) episodic lability in delay parameters, leading to multiple peaks and their harmonics; and (4) coupling of small numbers of nephrons, leading to broadening of peaks, multiple peaks, and their harmonics. We conclude that the complex power spectra in SHR may be explained by the inherent complexity of TGF dynamics, which may include solution bifurcations, variation in TGF parameters, and coupling between small numbers of neighboring nephrons.