Paul Aspinwall : The Ubiquity of the ADE Classification
- Graduate/Faculty Seminar ( 266 Views )Many classes of mathematical objects turn out to be classified in the same way --- two infinite series and 3 "exceptional" objects. These include symmetries of 3-dimensional solids, rigid singularities, certain types of Lie algebras, positive definite even intersection forms, etc. Discovering why such classes should have the same classification has led to many beautiful ideas and observations. I will give a review of some of the basic ideas (assuming very little in the way of prerequisites) and I may have time to say why string theory has been important in this context.
Lenhard Ng : Symplectic Techniques in Topology: An Informal Introduction
- Graduate/Faculty Seminar ( 254 Views )In geometry, there are certain structures that are "rigid" (like Riemannian manifolds) and others that are "flexible" (like topological manifolds). Symplectic geometry lies in between these two extremes and incorporates some attractive features of both. One consequence is that symplectic techniques have recently been used, to great effect, to give combinatorial approaches to questions in topology that previously required difficult gauge-theoretic and analytic techniques. I will introduce symplectic structures and describe some recent developments linking them to the study of three-dimensional manifolds and knots. No real background will be assumed.
George Lam : The Positive Mass Theorem in General Relativity
- Graduate/Faculty Seminar ( 239 Views )The Positive Mass Theorem in general relativity states that a spacelike hypersurface of a spacetime satisfying the dominant energy condition must have nonnegative total mass. In the special case in which the hypersurface is totally geodesic, local energy density coincides with scalar curvature, and the above theorem becomes a purely geometric statement about complete, asymptotically flat Riemannian manifolds. I will try to present the necessary background for one to understand the statement of the theorem. I will also discuss attempts to better understand the relationship between scalar curvature and total mass. Note that this talk is especially geared towards early graduate students and people specializing in other fields, and thus I will assume no previous knowledge of smooth manifolds, Riemannian geometry or general relativity.
Aaron Pollack : Modular forms on exceptional groups
- Graduate/Faculty Seminar ( 238 Views )Classically, a modular form for a reductive group G is an automorphic form that gives rise to a holomorphic function on the symmetric space G/K, when this symmetric space has complex structure. However, there are very interesting groups G, such as those of type G_2 and E_8, for which G/K does not have complex structure. Nevertheless, there is a theory of modular forms on these exceptional groups, whose study was initiated by Gross-Wallach and Gan-Gross-Savin. I will define these objects and describe what is known about them.
Joseph Spivey : A How-To Guide to Building Your Very Own Moduli Spaces (they make such great gifts)
- Graduate/Faculty Seminar ( 238 Views )I'll be talking about how to construct the moduli space for genus g Riemann surfaces with r boundary components. I'll draw lots of pictures and focus a lot of attention on genus 1 Riemann surfaces with 1 boundary component. As an application, I'll probably talk about H^1(SL2(Z)) with coefficients in various representations--and the correspondence to modular forms (briefly, and without a whole lot of proofs).
Zhennan Zhou : Semi-classical Schrodinger equation in the electromagnetic field: approximations and numerics
- Graduate/Faculty Seminar ( 228 Views )I will discuss the semi-classical Schrodinger equation with vector potentials, and its challenges in analysis and in numerical simulations. The time splitting spectral method method will be introduced to solve the equation directly, which is believed to have the optimal mesh strategy. Afterwards. a series of wave packet based approximation approaches will be introduced, like the Gaussian beam method, Hagedorn wave packets method and the Gaussian wave packet transformation method.
Joseph Spivey! : Mapping Class Groups and Moduli Spaces
- Graduate/Faculty Seminar ( 216 Views )There are many different ways to make a compact 2-manifold of genus g into a Riemann surface. In fact, there is an entire space of dimension 3g-3 (when g>1) of possible holomorphic structures. This space is called the moduli space of Riemann surfaces of genus g. We will give a definition of moduli spaces and briefly talk about their construction, starting with the "easy" examples of g=0 and g=1. We will also talk about mapping class groups, which play an important part in the construction of moduli spaces.
Hubert Bray : What do Black Holes and Soap Bubbles have in common?
- Graduate/Faculty Seminar ( 212 Views )We will begin with the idea of General Relativity, which Einstein called his "happiest thought," and then proceed with a qualitative and quantitative discussion of the curvature of space-time. We will describe the central role of differential geometry in the subject and the important role that mathematicians have played proving the conjectures of the physicists, as well as making a few conjectures of our own. Finally, we will describe the geometry of black holes and their relationship to soap bubbles.
Paul Bendich : Topology and Geometry for Tracking and Sensor Fusion
- Graduate/Faculty Seminar ( 205 Views )Many systems employ sensors to interpret the environment. The target-tracking task is to gather sensor data from the environment and then to partition these data into tracks that are produced by the same target. The goal of sensor fusion is to gather data from a heterogeneous collection of sensors (e.g, audio and video) and fuse them together in a way that enriches the performance of the sensor network at some task of interest. This talk summarizes two recent efforts that incorporate mildly sophisticated mathematics into the general sensor arena, and also comments on the joys and pitfalls of trying to apply math for customers who care much more about the results than the math. First, a key problem in tracking is to 'connect the dots:' more precisely, to take a piece of sensor data at a given time and associate it with a previously-existing track (or to declare that this is a new object). We use topological data analysis (TDA) to form data-association likelihood scores, and integrate these scores into a well-respected algorithm called Multiple Hypothesis Tracking. Tests on simulated data show that the TDA adds significant value over baseline, especially in the context of noisy sensor data. Second, we propose a very general and entirely unsupervised sensor fusion pipeline that uses recent techniques from diffusion geometry and wavelet theory to compress and then fuse time series of arbitrary dimension arising from disparate sensor modalities. The goal of the pipeline is to differentiate classes of time-ordered behavior sequences, and we demonstrate its performance on a well-studied digit sequence database. This talk represents joint work with many people. including Chris Tralie, Nathan Borggren, Sang Chin, Jesse Clarke, Jonathan deSena, John Harer, Jay Hineman, Elizabeth Munch, Andrew Newman, Alex Pieloch, David Porter, David Rouse, Nate Strawn, Adam Watkins, Michael Williams, Lihan Yao, and Peter Zulch.
Spencer Leslie : Intro to crystal graphs and their connections with number theory
- Graduate/Faculty Seminar ( 199 Views )I will review some basics of crystal bases for highest-weight representations for a semisimple Lie algebra. I will also point to some connections with number theory through Fourier coefficients of Eisenstein series, mostly in type A.
Siming He : Suppression of Chemotactic blow-up through fluid flows
- Graduate/Faculty Seminar ( 198 Views )The Patlak-Keller-Segel equations (PKS) are widely applied to model the chemotaxis phenomena in biology. It is well-known that if the total mass of the initial cell density is large enough, the PKS equations exhibit finite time blow-up. In this talk, I will present some recent results on applying additional fluid flows to suppress chemotactic blow-up in the PKS equations.
Lihan Wang : Approximation of Correctors and Multipoles in Random Elliptic Media
- Graduate/Faculty Seminar ( 198 Views )We consider the whole-space decaying solution of second-order elliptic PDE in divergence form with space dimension d=3, where the coefficient field is a realization of a stationary, uniformly elliptic, unit range ensemble of random field, and the right-hand-side is deterministic and compactly supported in a ball of size \ell. Given the coefficient field in a large box of size L much larger than \ell, we are interested in an algorithm to compute the gradient of the solution with the "best" artificial boundary condition on the domain of size L which describes the correct long-range multipole behavior. We want to show that, with high probability, our algorithm reaches the CLT-type lower bound of error. Joint work with Jianfeng Lu and Felix Otto.
Dong Yao : Two problems in probability theory
- Graduate/Faculty Seminar ( 197 Views )This talk will be concerned with two problems. The first is the zeros of the derivatives of. Kac random polynomials K_n, which is a random polynomial with i.i.d. coefficients. It has been shown that the empirical measure of zeros of K_n will converge to the uniform measure on the unit circle of complex plane. Same convergence holds true for nay fixed order of derivative of K_n. In a joint work with Renjie Feng, we show if we consider the N_n-th order of derivative of K_n, then asymptotic behavior of empirical measure of this derivative will depend on the limit of \frac{N_n}{n}. In particular, as long as this ratio is greater than 0, the phenomenon of ‘zeros clustering around unit circleÂ’ breaks down. The second talk is about Average Nearest Neighbor Degree (ANND), which is a measure for the degree-degree correlation for complex network. We shall be concerned with the probabilistic properties of ANND in the configuration model. We prove if the variable X generating the network has order of moment larger than 2, then the ANND(k) will converge uniformly to μ2/μ1, where μ2 is the second moment of X, and μ1 is the first moment. For the case that X has infinite variance, we show the pointwise (i.e., for fixed k) scaled convergence of ANND(k) to a stable random variable. This is joint work with Nelly Litvak and Pim van der Hoorn. More recently, Clara Stegehuis showed that when X is sample from the Pareto distribution, then one can obtain a complete spectrum of ANND(k) for the erased configuration model.
Ashleigh Thomas : Practical multiparameter persistent homology
- Graduate/Faculty Seminar ( 196 Views )In this talk we will explore a mathematical data analysis tool called persistent homology and look specifically into how we can turn topological information into useful data for statistical techniques. The problem is one of translation: persistent homology outputs a module, but statistics is formulated for objects in metric, vector, Banach, and Hilbert spaces. We'll see some of the ways this issue can be dealt with in a special case (single-parameter persistence) and discuss which of those techniques are viable for a more general case (multiparameter persistence).
Kevin Kordek : Geography of Mapping Class Groups and Moduli Spaces
- Graduate/Faculty Seminar ( 192 Views )Mapping class groups are topological objects which can be used to describe the continuous symmetries of a surface. On the other hand, every compact orientable surface has a moduli space, a complex variety whose points parametrize all of its inequivalent complex structures. These concepts turn out to be closely related. In this talk, we'll cover the basics of both mapping class groups and moduli of Riemann surfaces, as well as explore their relationship.
Robert Bryant : The Concept of Holonomy
- Graduate/Faculty Seminar ( 190 Views )In the 19th century, people began to study mechanical systems in which motion in a configuration space was constrained by 'no slip' conditions, such as, for example, a wheel or a ball rolling on a plane without slipping. It was immediately noticed that there were many cases in which these 'rolling' constraints did not prevent one from being able to join any two points in a configuration space by an admissible path, and these situations were called 'non-holonomic'. The notion of 'holonomy' arose as a way to quantify and study these 'non-holonomic' systems, and it has turned out to be very fruitful, with many applications in differential geometry and mathematical physics as well as in practical mechanics problems (such as figuring out how to use robot hands to manipulate 3-dimensional objects). In this talk, I'll introduce the ideas that led to the development of the concept of holonomy, show how some simple examples are computed, and describe how even very simple systems, such as a convex surface rolling over another surface without slipping or twisting, can lead to some surprising and exceptional geometry. No expertise in differential geometry will be assumed; if you are comfortable with vector calculus, you can enjoy the talk.
Nan Wu : Locally Linear Embedding on Manifold with or Without Boundary
- Graduate/Faculty Seminar ( 188 Views )Locally Linear Embedding(LLE), is a well known manifold learning algorithm published in Science by S. T. Roweis and L. K. Saul in 2000. In this talk, we provide an asymptotic analysis of the LLE algorithm under the manifold setup. We establish the kernel function associated with the LLE and show that the asymptotic behavior of the LLE depends on the regularization parameter in the algorithm. We show that on a closed manifold, asymptotically we may not obtain the Laplace-Beltrami operator, and the result may depend on the non-uniform sampling, unless a correct regularization is chosen. Moreover, we study the behavior of the algorithm on a compact manifold with boundary. This talk is based on the joint work with Hau-tieng Wu.
Bianca Santoro : Nice person speaks of ... ?
- Graduate/Faculty Seminar ( 187 Views )THIS JUST IN - An Abstract: I plan to speak about the good old Calabi Conjecture, and its beautiful solution by Yau, that gave gim the Fields Medal. I will start with some background material, and see how far we can get into the proof!
Michael Jenista : Dynamical Systems and the Conley Index
- Graduate/Faculty Seminar ( 180 Views )An introductory lecture to the Conley Index theory. We consider the flow case and introduce the key object of study: an index pair of an isolated invariant set. Index pairs are robust under perturbations and their homotopy type is invariant, making them an ideal tool for problems with error terms or even data-generated systems. The relevant tools are algebraic topology and some knowledge of continuous flows.
Michael Reed : The Ear for Mathematicians
- Graduate/Faculty Seminar ( 179 Views )The ear from the outside in. Eardrum, middle ear, cochlea, 8th nerve, brainstem, cortex. What happens anyway when you listen to Mozart or Van Halen? How do pressure waves become electrical signals? What happens next? Is there deep mathematics in the auditory system? And what are those carteliginous things doing flapping in the breeze on the side of your head? Who says an abstract has to have declarative sentences? Will some of these questions be answered? Come and see!
Hubert Bray : An Overview of General Relativity
- Graduate/Faculty Seminar ( 169 Views )After brief introductions to special relativity and the foundations of differential geometry, we will discuss the big ideas behind Einstein's theory of general relativity. Einstein's theory replaces Newtonian physics not only as the best description of gravity according to experiments, but also as a philosophically pleasing and very geometric idea, which Einstein called his "happiest thought." We will also discuss the predictions made by general relativity, including the big bang and black holes, both of which are strongly supported by observations. We will discuss these ideas from a geometric perspective, and discuss some of the open problems and future directions that are currently being studied.
Masha Bessonov : The Voter Model
- Graduate/Faculty Seminar ( 165 Views )We'll look at a random process on the integer lattice $/mathbb{Z}^2$ known as the voter model. Let's suppose that each point on the lattice represents a single household with one voter who holds one of two possible opinions, 0 or 1 (e.g. Republican or Democrat). Starting with an initial configuration of 0's and 1's on $/mathbb{Z}^2$, a voter changes their opinion at a rate proportional to the number of neighbors holding a different opinion. I'll demonstrate a clever and useful approach to analysing the voter model via the dual process. We'll be able to determine whether or not our process has any nontrivial stationary distributions. I'll also briefly discuss the newest research on variants of the voter model.
Brendan Williamson : When is it true? Creating assumptions to prove theorems.
- Graduate/Faculty Seminar ( 157 Views )In this talk we look at a specific problem in probability related to the stochastic versions of the Burgers' and Navier-Stokes equations, and the path taken to construct sufficient assumptions to prove the desired properties, specifically the existence of an invariant distribution. This talk covers material in Stochastic Differential Equations and Stochastic Partial Differential Equations, but also in Real Algebraic Geometry and Perturbation Theory.
Matt Bowen : A numerical method for cardiac cell models
- Graduate/Faculty Seminar ( 156 Views )The prevailing numerical methods for solving the reaction-diffusion systems in models of cardiac electrical activity currently use second-order adaptive mesh refinement, refining the spatial and temporal meshes only near the traveling wavefront(s). However, in two and three spatial dimensions under biologically relevant initial conditions and forcing, these wavefronts can constitute a relatively high percentage of the computational domain, limiting the effectiveness of the scheme. In this talk, I will present a numerical scheme based on higher order finite elements and spectral deferred correction designed to improve the efficiency in computing for domains of cardiac cells.
Mauro Maggioni : Random walks on data sets in high dimensions, and a new hot system of coordinates
- Graduate/Faculty Seminar ( 154 Views )I will motivate the need to analyze data sets in high dimensions, their geometrical properties and the properties of functions on them with several examples. I will focus on techniques based on random walks on data sets, and introduce a new nonlinear system of coordinates based on heat kernels, similar in spirit to the GPS system, for parametrizing data sets. If time allows, I will also discuss simple but surprisingly successful applications of the heat kernel to fit functions on data, that performs at the state-of-art or better as a classifier on a variety of benchmark data sets.
Harold Layton : Irregular Flow Oscillations in the Nephrons of Spontaneously Hypertensive Rats
- Graduate/Faculty Seminar ( 153 Views )The nephron is the functional unit of the kidney. The flow rate in each nephron is regulated, in part, by tubuloglomerular feedback, a negative feedback loop. In some parameter regimes, this feedback system can exhibit oscillations that approximate limit-cycle oscillations. However, nephron flow in spontaneously hypertensive rats (SHR) can exhibit highly irregular oscillations similar to deterministic chaos. We used a mathematical model of tubuloglomerular feedback (TGF) to investigate potential sources of the irregular oscillations and the associated complex power spectra in SHR. A bifurcation analysis of the TGF model equation was performed by finding roots of the characteristic equation, and numerical simulations of model solutions were conducted to assist in the interpretation of the analysis. Four potential sources of spectral complexity in SHR were identified: (1) bifurcations that produce qualitative changes in solution type, leading to multiple spectrum peaks and their respective harmonic peaks; (2) continuous lability in delay parameters, leading to broadening of peaks and their harmonics; (3) episodic lability in delay parameters, leading to multiple peaks and their harmonics; and (4) coupling of small numbers of nephrons, leading to broadening of peaks, multiple peaks, and their harmonics. We conclude that the complex power spectra in SHR may be explained by the inherent complexity of TGF dynamics, which may include solution bifurcations, variation in TGF parameters, and coupling between small numbers of neighboring nephrons.
Mark Stern : Frommers guide to vector bundles
- Graduate/Faculty Seminar ( 150 Views )I will give an introduction to the analysis, geometry, and topology of vector bundles for a general (i.e. nongeometric) audience. I will range from how vector bundles arise in Math 103 to how we can use partial differential equation techniques to extract interesting physical, algebraic, and topological information from them.