Stochastic and continuum dynamics in intracellular transport
- Graduate/Faculty Seminar,Uploaded Videos ( 1111 Views )The cellular cytoskeleton is made up of protein polymers (filaments) that are essential in proper cell and neuronal function as well as in development. These filaments represent the roads along which most protein transport occurs inside cells. I will discuss several examples where questions about filament-cargo interactions require the development of novel mathematical modeling, analysis, and simulation. Protein cargoes such as neurofilaments and RNA molecules bind to and unbind from cellular roads called microtubules, switching between bidirectional transport, diffusion, and stationary states. Since these transport models can be analytically intractable, we have proposed asymptotic methods in the framework of partial differential equations and stochastic processes which are useful in understanding large-time transport properties. I will discuss a recent project where we use stochastic modeling to understand how filament orientations may influence sorting of cargo in dendrites during neural development and axonal injury.
Holden Lee : Recovering sparse Fourier signals, with application to system identification
- Graduate/Faculty Seminar,Uploaded Videos ( 1090 Views )The problem of recovering a sparse Fourier signal from samples comes up in signal processing, imaging, NMR spectroscopy, and machine learning. Two major challenges involve dealing with off-grid frequencies, and dealing with signals lacking separation between frequencies. Without a minimum separation condition, the problem of frequency recovery is exponentially ill-conditioned, but the signal can still be efficiently recovered in an "improper" manner using an appropriate filter. I will explain such an algorithm for sparse Fourier recovery, and the theory behind why it works - involving some clever analytic inequalities for Fourier-sparse signals. Finally, I will discuss recent work with Xue Chen on applying these ideas to system identification. Identification of a linear dynamical system from partial observations is a fundamental problem in control theory. A natural question is how to do so with statistical rates depending on the inherent dimensionality (or order) of the system, akin to the sparsity of a signal. We solve this question by casting system identification as a "multi-scale" sparse Fourier recovery problem.
Yiming Zhong : Fast algorithm for Radiative transport
- Graduate/Faculty Seminar,Uploaded Videos ( 991 Views )This talk consists of two aspects about solving the radiative transport through the integral formulation. The radiative transport equation has been numerically studied for many years, the equation is difficult to solve due to its high dimensionality and its hyperbolic nature, in recent decades, the computers are equipped with larger memories so it is possible to deal with the full-discretization in phase space, however, the numerical efficiency is quite limited because of many issues, such as iterative scheme, preconditioning, discretization, etc. In this talk, we first discuss about the special case of isotropic scattering and its integral formulation, then walk through the corresponding fast algorithm for it. In the second part, we try to trivially extend the method to anisotropic case, and talk about the method’s limitation and some perspectives in both theory and numerics.
Sarah Schott : Computational Complexity
- Graduate/Faculty Seminar ( 274 Views )What does it mean for a problem to be in P, or NP? What is NP completeness? These are questions, among others, that I hope to answer in my talk on computational complexity. Computational complexity is a branch of theoretical computer science dealing with analysis of algorithms. I hope to make it as accessible as possible, with no prior knowledge of algorithms and running times.
Dmitry Vagner : Higher Dimensional Algebra in Topology
- Graduate/Faculty Seminar ( 241 Views )In his letter, "Pursuing Stacks," Grothendieck advocated to Quillen for the use of "higher" categories to encode the higher homotopy of spaces. In particular, Grothendieck dreamt of realizing homotopy n-types as n-groupoids. This powerful idea both opened the field of higher dimensional algebra but also informed a paradigm in which the distinction between topology and algebra is blurred. Since then, work by Baez and Dolan among others further surveyed the landscape of higher categories and their relationship to topology. In this talk, we will explore this story, beginning with some definitions and examples of higher categories. We will then proceed to explain "the periodic table of higher categories" and the four central hypotheses of higher category theory. In particular, these give purely algebraic characterizations of homotopy types, manifolds, and generalized knots; and account for the general phenomena of stabilization in topology. No prerequisites beyond basic ideas in algebraic topology will be expected.
George Lam : The Positive Mass Theorem in General Relativity
- Graduate/Faculty Seminar ( 239 Views )The Positive Mass Theorem in general relativity states that a spacelike hypersurface of a spacetime satisfying the dominant energy condition must have nonnegative total mass. In the special case in which the hypersurface is totally geodesic, local energy density coincides with scalar curvature, and the above theorem becomes a purely geometric statement about complete, asymptotically flat Riemannian manifolds. I will try to present the necessary background for one to understand the statement of the theorem. I will also discuss attempts to better understand the relationship between scalar curvature and total mass. Note that this talk is especially geared towards early graduate students and people specializing in other fields, and thus I will assume no previous knowledge of smooth manifolds, Riemannian geometry or general relativity.
Aaron Pollack : Modular forms on exceptional groups
- Graduate/Faculty Seminar ( 238 Views )Classically, a modular form for a reductive group G is an automorphic form that gives rise to a holomorphic function on the symmetric space G/K, when this symmetric space has complex structure. However, there are very interesting groups G, such as those of type G_2 and E_8, for which G/K does not have complex structure. Nevertheless, there is a theory of modular forms on these exceptional groups, whose study was initiated by Gross-Wallach and Gan-Gross-Savin. I will define these objects and describe what is known about them.
Joseph Spivey : A How-To Guide to Building Your Very Own Moduli Spaces (they make such great gifts)
- Graduate/Faculty Seminar ( 238 Views )I'll be talking about how to construct the moduli space for genus g Riemann surfaces with r boundary components. I'll draw lots of pictures and focus a lot of attention on genus 1 Riemann surfaces with 1 boundary component. As an application, I'll probably talk about H^1(SL2(Z)) with coefficients in various representations--and the correspondence to modular forms (briefly, and without a whole lot of proofs).
Dmitry Vagner : Introduction to Diagrammatic Algebra
- Graduate/Faculty Seminar ( 234 Views )We show how algebraic relations can be encoded in suggestive topological diagrams and use this to prove various algebraic equations in a purely pictorial way. We will first go over a few canonical examples: monoids, self-dual objects, Frobenius algebras, and monads. Then we will briefly discuss the underlying theory that makes this miracle rigorous.
Miles M. Crosskey : Mathematics in Magic
- Graduate/Faculty Seminar ( 224 Views )Many simple card tricks rely on mathematical principles and logic. I will be talking about some of these tricks, and the interesting ideas behind them. Hopefully I will have time to show you two or three tricks, and the proof to how they work. I will be using work from Mathematical Magic by Diaconis and Graham. The exciting thing about these tricks is they do not rely upon sleight of hand, and come out looking stunning nonetheless.
Nadav Dym : Linear computation of angle preserving mappings
- Graduate/Faculty Seminar ( 223 Views )We will discuss recent work on computing angle preserving mappings (a.k.a. conformal mappings) using linear methods. We will begin with an intro/reminder on what these mappings are, and why would one to compute them. Then we will discuss the results themselves which show that when choosing a good target domain, computation of angle preserving mappings can be made linear in the sense that (i) They are a solution of a linear PDE (ii) They can be approximated by solving a finite dimensional linear system and (iii) the approximates are themselves homeomorphisms and "discrete conformal".
Chung-Ru Lee : Introduction to Trace Formula
- Graduate/Faculty Seminar ( 208 Views )The Trace Formula can be understood roughly as an equation relating spectral data to geometric information. It is obtained via expansion of the trace of certain operators that are associated to the Representation Theory of an affine algebraic group, justifying its name. Therefore, the spectral side of the expansion by nature contains data of arithmetic interests. However, the spectral side is generally less accessible. Meanwhile, the geometric side consists of terms that can be written in a more explicit fashion. The computation of the geometric side, which is now referred to as the Orbital Integrals, thus come on the scene. In this talk, we plan to briefly introduce the general derivation of the (vaguely described) Trace Formula, and demonstrate a few concrete examples of it.
Paul Bendich : Topology and Geometry for Tracking and Sensor Fusion
- Graduate/Faculty Seminar ( 205 Views )Many systems employ sensors to interpret the environment. The target-tracking task is to gather sensor data from the environment and then to partition these data into tracks that are produced by the same target. The goal of sensor fusion is to gather data from a heterogeneous collection of sensors (e.g, audio and video) and fuse them together in a way that enriches the performance of the sensor network at some task of interest. This talk summarizes two recent efforts that incorporate mildly sophisticated mathematics into the general sensor arena, and also comments on the joys and pitfalls of trying to apply math for customers who care much more about the results than the math. First, a key problem in tracking is to 'connect the dots:' more precisely, to take a piece of sensor data at a given time and associate it with a previously-existing track (or to declare that this is a new object). We use topological data analysis (TDA) to form data-association likelihood scores, and integrate these scores into a well-respected algorithm called Multiple Hypothesis Tracking. Tests on simulated data show that the TDA adds significant value over baseline, especially in the context of noisy sensor data. Second, we propose a very general and entirely unsupervised sensor fusion pipeline that uses recent techniques from diffusion geometry and wavelet theory to compress and then fuse time series of arbitrary dimension arising from disparate sensor modalities. The goal of the pipeline is to differentiate classes of time-ordered behavior sequences, and we demonstrate its performance on a well-studied digit sequence database. This talk represents joint work with many people. including Chris Tralie, Nathan Borggren, Sang Chin, Jesse Clarke, Jonathan deSena, John Harer, Jay Hineman, Elizabeth Munch, Andrew Newman, Alex Pieloch, David Porter, David Rouse, Nate Strawn, Adam Watkins, Michael Williams, Lihan Yao, and Peter Zulch.
Shahed Sharif : Class field theory and cyclotomic fields
- Graduate/Faculty Seminar ( 204 Views )We'll undertake a gentle introduction to class field theory by investigating cyclotomic fields, including a proof of quadratic reciprocity. The results we'll discuss complement Les Saper's Grad Faculty seminar talk, though by no means is the latter a prerequisite. As a special treat, I will reveal a completely new, elementary proof of Fermat's Last Theorem.
Pam Miao Gu : Factorization tests and algorithms arising from counting modular forms and automorphic representations
- Graduate/Faculty Seminar ( 203 Views )A theorem of Gekeler compares the number of non-isomorphic automorphic representations associated with the space of cusp forms of weight $k$ on~$\Gamma_0(N)$ to a simpler function of $k$ and~$N$, showing that the two are equal whenever $N$ is squarefree. We prove the converse of this theorem (with one small exception), thus providing a characterization of squarefree integers. We also establish a similar characterization of prime numbers in terms of the number of Hecke newforms of weight $k$ on~$\Gamma_0(N)$. It follows that a hypothetical fast algorithm for computing the number of such automorphic representations for even a single weight $k$ would yield a fast test for whether $N$ is squarefree. We also show how to obtain bounds on the possible square divisors of a number $N$ that has been found to not be squarefree via this test, and we show how to probabilistically obtain the complete factorization of the squarefull part of $N$ from the number of such automorphic representations for two different weights. If in addition we have the number of such Hecke newforms for even a single weight $k$, then we show how to probabilistically factor $N$ entirely. All of these computations could be performed quickly in practice, given the number(s) of automorphic representations and modular forms as input. (Joint work with Greg Martin.)
Yuriy Mileyko : Enter Skeleton: a brief overview of skeletal structures
- Graduate/Faculty Seminar ( 200 Views )Skeletal structures, such as medial axis and curve skeleton, are a particular class of shape descriptors. They have numerous applications in shape recognition, shape retrieval, animation, morphing, registration, and virtual navigation. This talk will give a brief overview of the medial axis and the curve skeleton. The focus will be on the properties of the two objects crucial to applications. We shall show that the rigorous mathematical definition of the medial axis has allowed for an extensive and successful study of such properties. The curve skeleton, on the other hand, is typically defined by the set of properties it has to possess. As a result, numerous methods for computing the curve skeleton have been proposed, each providing mostly experimental verification of the required properties. If time permits, I will mention my work on defining shape skeleta via persistent homology, thus providing a powerful platform for investigating their properties.
Erin Beckman : The frog model on trees with drift
- Graduate/Faculty Seminar ( 198 Views )In this talk, I will introduce a version of the frog model interacting particle system. The system initially consists of a single active particle at the root of a d-ary tree and an inactive particle at every other node on the tree. Active particles move according to a biased random walk and when an active particle encounters an inactive particle, the inactive particle becomes active and begins its own biased random walk. I will begin with an introduction and history of the model before moving on to talk about recent results, giving bounds on the drift such that the model is recurrent. I will go briefly into the techniques of proving such bounds, which involve a subprocess of the frog model that can be coupled across trees of different degrees. This is based on joint work with Frank, Jiang, Junge, and Tang.
Siming He : Suppression of Chemotactic blow-up through fluid flows
- Graduate/Faculty Seminar ( 198 Views )The Patlak-Keller-Segel equations (PKS) are widely applied to model the chemotaxis phenomena in biology. It is well-known that if the total mass of the initial cell density is large enough, the PKS equations exhibit finite time blow-up. In this talk, I will present some recent results on applying additional fluid flows to suppress chemotactic blow-up in the PKS equations.
Lihan Wang : Approximation of Correctors and Multipoles in Random Elliptic Media
- Graduate/Faculty Seminar ( 198 Views )We consider the whole-space decaying solution of second-order elliptic PDE in divergence form with space dimension d=3, where the coefficient field is a realization of a stationary, uniformly elliptic, unit range ensemble of random field, and the right-hand-side is deterministic and compactly supported in a ball of size \ell. Given the coefficient field in a large box of size L much larger than \ell, we are interested in an algorithm to compute the gradient of the solution with the "best" artificial boundary condition on the domain of size L which describes the correct long-range multipole behavior. We want to show that, with high probability, our algorithm reaches the CLT-type lower bound of error. Joint work with Jianfeng Lu and Felix Otto.
Ashleigh Thomas : Practical multiparameter persistent homology
- Graduate/Faculty Seminar ( 196 Views )In this talk we will explore a mathematical data analysis tool called persistent homology and look specifically into how we can turn topological information into useful data for statistical techniques. The problem is one of translation: persistent homology outputs a module, but statistics is formulated for objects in metric, vector, Banach, and Hilbert spaces. We'll see some of the ways this issue can be dealt with in a special case (single-parameter persistence) and discuss which of those techniques are viable for a more general case (multiparameter persistence).
Tom Witelski : Perturbation analysis for impulsive differential equations: How asymptotics can resolve the ambiguities of distribution theory
- Graduate/Faculty Seminar ( 196 Views )Models for dynamical systems that include short-time or abrupt forcing can be written as impulsive differential equations. Applications include mechanical systems with impacts and models for electro-chemical spiking signals in neurons. We consider a model for spiking in neurons given by a nonlinear ordinary differential equation that includes a Dirac delta function. Ambiguities in how to interpret such equations can be resolved via perturbation methods and asymptotic analysis of delta sequences.
Chen An : A Chebotarev density theorem for certain families of D_4-quartic fields
- Graduate/Faculty Seminar ( 193 Views )In a recent paper of Pierce, Turnage-Butterbaugh, and Wood, the authors proved an effective Chebotarev density theorem for families of number fields. Notably D_4-quartic fields have not been treated in their paper. In this talk, I will explain the importance of the case for D_4-quartic fields and will present my proof of a Chebotarev density theorem for certain families of D_4-quartic fields. The key tools are a lower bound for the number of fields in the families and a zero-free region for almost all fields in the families.
Shrawan Kumar : Topology of Lie groups
- Graduate/Faculty Seminar ( 186 Views )I will give an overview of some of the classical results on the topology of Lie groups, including Hopf's theorem which fully determines the cohomology algebra over the real numbers of any Lie group. We will also discuss how the deRham cohomology of a compact Lie group can be represented by bi-invariant forms. In addition, we will discuss first and the second homotopy groups of Lie groups.
Aubrey HB : Persistent Homology
- Graduate/Faculty Seminar ( 185 Views )Persistent Homology is an emerging field of Computational Topology that is developing tools to discover the underlying structure in high-dimensional data sets. I will discuss the origins and main concepts involved in Persistent Homology in an accessible way, with illustrations and comprehensive examples. If time allows, I will also describe some current, as well as, future applications of Persistent Homology.
Bill Allard : The Boundary Finder
- Graduate/Faculty Seminar ( 185 Views )(This abstract is in TeX source code. Sorry!) Fix a small positive number $h$. Let $$G=h\mathbb{Z}^2=\{(ih,jh):i,j\in\mathbb{Z}\};$$ thus $G$ is a rectangular grid of points in $\mathbb{R}^2$. Let $\Omega$ be an bounded open subset of $\mathbb{R}^2$ with $C^1$ boundary and let $E=\{x\in G:x\in\Omega\}$. {\bf Question One.} Given $E$ can one determine the length of $\partial\Omega$ to within $O(h)$? The answer to this question is ``yes'', provided $\Omega$ satisfies a certain natural ``thickness'' condition; without this additional assumption the answer may be ``no''. {\bf Question Two.} Is there a fast algorithm for determining the length of $\partial\Omega$. The answer to this question also ``yes''. In this talk I will describe the proof that the answer to Question One is ``yes'' and I will describe the fast algorithm whose existence is implied in the answer to Question Two. If time permits, I will describe some applications.