Dmitry Vagner : Higher Dimensional Algebra in Topology
- Graduate/Faculty Seminar ( 241 Views )In his letter, "Pursuing Stacks," Grothendieck advocated to Quillen for the use of "higher" categories to encode the higher homotopy of spaces. In particular, Grothendieck dreamt of realizing homotopy n-types as n-groupoids. This powerful idea both opened the field of higher dimensional algebra but also informed a paradigm in which the distinction between topology and algebra is blurred. Since then, work by Baez and Dolan among others further surveyed the landscape of higher categories and their relationship to topology. In this talk, we will explore this story, beginning with some definitions and examples of higher categories. We will then proceed to explain "the periodic table of higher categories" and the four central hypotheses of higher category theory. In particular, these give purely algebraic characterizations of homotopy types, manifolds, and generalized knots; and account for the general phenomena of stabilization in topology. No prerequisites beyond basic ideas in algebraic topology will be expected.
George Lam : The Positive Mass Theorem in General Relativity
- Graduate/Faculty Seminar ( 239 Views )The Positive Mass Theorem in general relativity states that a spacelike hypersurface of a spacetime satisfying the dominant energy condition must have nonnegative total mass. In the special case in which the hypersurface is totally geodesic, local energy density coincides with scalar curvature, and the above theorem becomes a purely geometric statement about complete, asymptotically flat Riemannian manifolds. I will try to present the necessary background for one to understand the statement of the theorem. I will also discuss attempts to better understand the relationship between scalar curvature and total mass. Note that this talk is especially geared towards early graduate students and people specializing in other fields, and thus I will assume no previous knowledge of smooth manifolds, Riemannian geometry or general relativity.
Dmitry Vagner : Introduction to Diagrammatic Algebra
- Graduate/Faculty Seminar ( 234 Views )We show how algebraic relations can be encoded in suggestive topological diagrams and use this to prove various algebraic equations in a purely pictorial way. We will first go over a few canonical examples: monoids, self-dual objects, Frobenius algebras, and monads. Then we will briefly discuss the underlying theory that makes this miracle rigorous.
Miles M. Crosskey : Mathematics in Magic
- Graduate/Faculty Seminar ( 224 Views )Many simple card tricks rely on mathematical principles and logic. I will be talking about some of these tricks, and the interesting ideas behind them. Hopefully I will have time to show you two or three tricks, and the proof to how they work. I will be using work from Mathematical Magic by Diaconis and Graham. The exciting thing about these tricks is they do not rely upon sleight of hand, and come out looking stunning nonetheless.
Nadav Dym : Linear computation of angle preserving mappings
- Graduate/Faculty Seminar ( 223 Views )We will discuss recent work on computing angle preserving mappings (a.k.a. conformal mappings) using linear methods. We will begin with an intro/reminder on what these mappings are, and why would one to compute them. Then we will discuss the results themselves which show that when choosing a good target domain, computation of angle preserving mappings can be made linear in the sense that (i) They are a solution of a linear PDE (ii) They can be approximated by solving a finite dimensional linear system and (iii) the approximates are themselves homeomorphisms and "discrete conformal".
Siming He : Suppression of Chemotactic blow-up through fluid flows
- Graduate/Faculty Seminar ( 198 Views )The Patlak-Keller-Segel equations (PKS) are widely applied to model the chemotaxis phenomena in biology. It is well-known that if the total mass of the initial cell density is large enough, the PKS equations exhibit finite time blow-up. In this talk, I will present some recent results on applying additional fluid flows to suppress chemotactic blow-up in the PKS equations.
Chen An : A Chebotarev density theorem for certain families of D_4-quartic fields
- Graduate/Faculty Seminar ( 193 Views )In a recent paper of Pierce, Turnage-Butterbaugh, and Wood, the authors proved an effective Chebotarev density theorem for families of number fields. Notably D_4-quartic fields have not been treated in their paper. In this talk, I will explain the importance of the case for D_4-quartic fields and will present my proof of a Chebotarev density theorem for certain families of D_4-quartic fields. The key tools are a lower bound for the number of fields in the families and a zero-free region for almost all fields in the families.
Shrawan Kumar : Topology of Lie groups
- Graduate/Faculty Seminar ( 186 Views )I will give an overview of some of the classical results on the topology of Lie groups, including Hopf's theorem which fully determines the cohomology algebra over the real numbers of any Lie group. We will also discuss how the deRham cohomology of a compact Lie group can be represented by bi-invariant forms. In addition, we will discuss first and the second homotopy groups of Lie groups.
Aubrey HB : Persistent Homology
- Graduate/Faculty Seminar ( 185 Views )Persistent Homology is an emerging field of Computational Topology that is developing tools to discover the underlying structure in high-dimensional data sets. I will discuss the origins and main concepts involved in Persistent Homology in an accessible way, with illustrations and comprehensive examples. If time allows, I will also describe some current, as well as, future applications of Persistent Homology.
Bill Allard : The Boundary Finder
- Graduate/Faculty Seminar ( 185 Views )(This abstract is in TeX source code. Sorry!) Fix a small positive number $h$. Let $$G=h\mathbb{Z}^2=\{(ih,jh):i,j\in\mathbb{Z}\};$$ thus $G$ is a rectangular grid of points in $\mathbb{R}^2$. Let $\Omega$ be an bounded open subset of $\mathbb{R}^2$ with $C^1$ boundary and let $E=\{x\in G:x\in\Omega\}$. {\bf Question One.} Given $E$ can one determine the length of $\partial\Omega$ to within $O(h)$? The answer to this question is ``yes'', provided $\Omega$ satisfies a certain natural ``thickness'' condition; without this additional assumption the answer may be ``no''. {\bf Question Two.} Is there a fast algorithm for determining the length of $\partial\Omega$. The answer to this question also ``yes''. In this talk I will describe the proof that the answer to Question One is ``yes'' and I will describe the fast algorithm whose existence is implied in the answer to Question Two. If time permits, I will describe some applications.
Mark Stern : Gauge theory : the geometry and physics of the ambiguity of acceleration
- Graduate/Faculty Seminar ( 163 Views )I will discuss the rich mathematical structures which arise when one asks how to define acceleration in the absence of a preferred coordinate system. I will introduce the Yang-Mills equations, which specialize to give electromagnetism and much of the physics of the standard model. I'll discuss aspects of the geometry, topology, and analysis of the Yang-Mills equations and how too much symmetry can actually make an analysis problem more difficult.
Francis Motta : A Dynamical Systems Perspective on Complex Hadamard Matrices
- Graduate/Faculty Seminar ( 159 Views )Simply put, complex Hadamard matrices are scaled unitary matrices with entries drawn from unit complex numbers. They appear as an essential ingredient in quantum information theory and their real members have deep connections to finite geometry and number theory. For us, in this talk, they will be the fixed points of both discrete and continuous dynamical systems. We begin by introducing complex Hadamards and some essential preliminaries. We then discuss a discrete-time dynamical system which can be used to generate complex Hadamards as well as closely related objects known as mutually unbiased bases. Finally, we construct a continuous system whose fixed points are complex Hadamards and exploit classical results from dynamical systems theory to study local structure in spaces of complex Hadamards.
Wai (Jenny) Law : Approximately Counting Perfect and General Matchings in Bipartite andGeneral Graphs
- Graduate/Faculty Seminar ( 155 Views )Approximating the permanent of a matrix with nonnegative entries is a well studied problem. The most successful approach to date uses Markov chains, and Jerrum, Sinclair, and Vigoda developed such a method that runs in polynomial time O(n^7 (log n)^4). We present a very different approach using self-reducible acceptance/rejection, and show that for a class of dense problems, our method has an O(n^4 log n) expected running time. Also, we extend our approach to approximate the number of perfect matchings in non-bipartite graphs and general matchings in general graphs.
Harold Layton : Irregular Flow Oscillations in the Nephrons of Spontaneously Hypertensive Rats
- Graduate/Faculty Seminar ( 153 Views )The nephron is the functional unit of the kidney. The flow rate in each nephron is regulated, in part, by tubuloglomerular feedback, a negative feedback loop. In some parameter regimes, this feedback system can exhibit oscillations that approximate limit-cycle oscillations. However, nephron flow in spontaneously hypertensive rats (SHR) can exhibit highly irregular oscillations similar to deterministic chaos. We used a mathematical model of tubuloglomerular feedback (TGF) to investigate potential sources of the irregular oscillations and the associated complex power spectra in SHR. A bifurcation analysis of the TGF model equation was performed by finding roots of the characteristic equation, and numerical simulations of model solutions were conducted to assist in the interpretation of the analysis. Four potential sources of spectral complexity in SHR were identified: (1) bifurcations that produce qualitative changes in solution type, leading to multiple spectrum peaks and their respective harmonic peaks; (2) continuous lability in delay parameters, leading to broadening of peaks and their harmonics; (3) episodic lability in delay parameters, leading to multiple peaks and their harmonics; and (4) coupling of small numbers of nephrons, leading to broadening of peaks, multiple peaks, and their harmonics. We conclude that the complex power spectra in SHR may be explained by the inherent complexity of TGF dynamics, which may include solution bifurcations, variation in TGF parameters, and coupling between small numbers of neighboring nephrons.
Benoit Charbonneau : Instantons and reduction of order via the Nahm transform
- Graduate/Faculty Seminar ( 152 Views )The instanton equations appear in gauge theory and generalize both the Maxwell equations and the harmonic equation. Their study has been and continues to be a very fertile ground for interactions between physicists and mathematicians. The object of this talk is a description of instanton solutions on S^1xR^3 due to Hurtubise and myself using the Nahm transform, a non-linear transformation that takes a system of PDE and produces a system of ODE or even a system of algebraic equations. This description allows us to answer existence questions for calorons.
Dave Rose : The EilenbergÂ?Mazur swindle
- Graduate/Faculty Seminar ( 146 Views )At some point in every mathematician's life they have seen the paradoxical 'proof' that 1=0 obtained by different groupings of the infinite sum 1-1+1-1+... As we learn, the issue is that this series does not converge. The Eilenberg-Mazur swindle is a twist on this argument which shows that A+B+A+B+... = 0 implies that A=0=B in certain situations where we can make sense of the infinite sum. In this talk, we will explore these swindles, touching on many interesting areas of mathematics along the way.
Robert Bryant : The geometry of periodic equi-areal sequences
- Graduate/Faculty Seminar ( 141 Views )A sequence of functions $f = (f_i)$ ($-\infty < i < \infty$) on a surface $S$ is said to be \emph{equi-areal} (or sometimes, \emph{equi-Poisson}) if it satisfies the relations $$ df_{i-1}\wedge df_i = df_i\wedge df_{i+1}\ (\not=0) $$ for all $i$. In other words, the successive pairs $(f_i,f_{i+1})$ are local coordinates on $S$ that induce the same area form on $S$, independent of $i$. One says that $f$ is \emph{$n$-periodic} if $f_i = f_{i+n}$ for all $i$. The $n$-periodic equi-areal sequences for low values of $n$ turn out to have close connections with interesting problems in both dynamical systems and in the theory of cluster algebras. In this talk, I will explain what is known about the classification (up to a natural notion of equivalence) of such sequences and their surprising relationships with differential geometry, cluster algebras, and the theory of overdetermined differential equations. I wonÂ?t assume that the audience knows much differential geometry, just basic multi-variable calculus, and the emphasis will be on describing the interesting results rather than on technical details.
Tom Beale : Computing Integrals on Surfaces
- Graduate/Faculty Seminar ( 139 Views )Suppose you need to compute an integral over a general surface numerically. How would you do it? You could triangulate the surface, or you might use coordinate charts. Either way is a lot of work, maybe more than you want to do if you have a large number of surfaces. I will describe a fairly simple method, appropriate for smooth, closed surfaces, developed by a former grad student here, Jason Wilson, in his Ph.D. thesis, including proofs that his algorithm works. I will then discuss the extension to integrals for potentials defined by densities on surfaces, such as harmonic functions. In that case the integrand has a singularity; special treatment is needed, and some interesting math comes in. Another of our former Ph.D.'s, Wenjun Ying, has contributed to that work (among many projects of his). Such integrals occur in several scientific contexts; I will especially mention Stokes flow (fluid flow dominated by viscosity), appropriate for modeling some aspects of biology on small scales. For more information, see J. t. Beale, W. Ying, and J. R. Wilson, A simple method for computing singular or nearly singular integrals on closed surfaces at my web site or at http://arxiv.org/abs/1508.00265
Jeff Jauregui : Geometry and topology in low dimensions: an introduction togeometric flows
- Graduate/Faculty Seminar ( 136 Views )This talk will be geared toward first and second year grad students and/or anyone with limited geometry experience. We will discuss the idea of curvature for curves and surfaces and the notion of "best metrics." The classical Uniformization Theorem will be introduced from a modern angle: Ricci flow. This will motivate studying the Ricci flow in dimension 3 as a tool to understand topology in terms of geometry. Time permitting, we will finish by discussing the Geometrization Theorem.
Erin Beckman : A Look at Branching Processes
- Graduate/Faculty Seminar ( 132 Views )In 1873, a man named Francis Galton posed a question in Educational Times, calling for the mathematical study of the extinction of family surnames over time. Within a year, mathematician Henry Watson replied with a solution. But instead of ending there, this question opened up a new direction of mathematics: the study of branching processes. A branching process is a particle system in which the particles undergo splitting or branching events dictated by particular rules. This talk will introduce some examples of these systems (from the basic Galton-Watson model to more general branching-selection models), interesting questions people ask about branching processes, and some recent research done in this area.