Demetre Kazaras:The geometry and topology of positive scalar curvature
- Graduate/Faculty Seminar,Uploaded Videos ( 1663 Views )I will give an informal overview of the history and status of my field. Local invariants of Riemannian metrics are called curvature, the weakest of which is known as "scalar curvature." The study of metrics with positive scalar curvature is very rich with >100 year old connections to General Relativity and smooth topology. Does this geometric condition have topological implications? The answer turns out to be "yes," but mathematicians continue to search for the true heart of the positive scalar curvature conditions.
Sarah Schott : Computational Complexity
- Graduate/Faculty Seminar ( 274 Views )What does it mean for a problem to be in P, or NP? What is NP completeness? These are questions, among others, that I hope to answer in my talk on computational complexity. Computational complexity is a branch of theoretical computer science dealing with analysis of algorithms. I hope to make it as accessible as possible, with no prior knowledge of algorithms and running times.
Dmitry Vagner : Higher Dimensional Algebra in Topology
- Graduate/Faculty Seminar ( 241 Views )In his letter, "Pursuing Stacks," Grothendieck advocated to Quillen for the use of "higher" categories to encode the higher homotopy of spaces. In particular, Grothendieck dreamt of realizing homotopy n-types as n-groupoids. This powerful idea both opened the field of higher dimensional algebra but also informed a paradigm in which the distinction between topology and algebra is blurred. Since then, work by Baez and Dolan among others further surveyed the landscape of higher categories and their relationship to topology. In this talk, we will explore this story, beginning with some definitions and examples of higher categories. We will then proceed to explain "the periodic table of higher categories" and the four central hypotheses of higher category theory. In particular, these give purely algebraic characterizations of homotopy types, manifolds, and generalized knots; and account for the general phenomena of stabilization in topology. No prerequisites beyond basic ideas in algebraic topology will be expected.
Dmitry Vagner : Introduction to Diagrammatic Algebra
- Graduate/Faculty Seminar ( 234 Views )We show how algebraic relations can be encoded in suggestive topological diagrams and use this to prove various algebraic equations in a purely pictorial way. We will first go over a few canonical examples: monoids, self-dual objects, Frobenius algebras, and monads. Then we will briefly discuss the underlying theory that makes this miracle rigorous.
Miles M. Crosskey : Mathematics in Magic
- Graduate/Faculty Seminar ( 224 Views )Many simple card tricks rely on mathematical principles and logic. I will be talking about some of these tricks, and the interesting ideas behind them. Hopefully I will have time to show you two or three tricks, and the proof to how they work. I will be using work from Mathematical Magic by Diaconis and Graham. The exciting thing about these tricks is they do not rely upon sleight of hand, and come out looking stunning nonetheless.
Nadav Dym : Linear computation of angle preserving mappings
- Graduate/Faculty Seminar ( 223 Views )We will discuss recent work on computing angle preserving mappings (a.k.a. conformal mappings) using linear methods. We will begin with an intro/reminder on what these mappings are, and why would one to compute them. Then we will discuss the results themselves which show that when choosing a good target domain, computation of angle preserving mappings can be made linear in the sense that (i) They are a solution of a linear PDE (ii) They can be approximated by solving a finite dimensional linear system and (iii) the approximates are themselves homeomorphisms and "discrete conformal".
Phillip Andreae : Spectral geometry and topology; Euler characteristic and analytic torsion
- Graduate/Faculty Seminar ( 208 Views )What do eigenvalues have to do with geometry and topology? The first part of the talk will provide a few answers to that very broad question, including a discussion of the Euler characteristic from a spectral theory perspective. The second part of the talk will be a brief introduction to my research in analytic torsion, a topological invariant defined in terms of eigenvalues. In particular I'll explain some similarities and differences between analytic torsion and Euler characteristic.
Shahed Sharif : Class field theory and cyclotomic fields
- Graduate/Faculty Seminar ( 204 Views )We'll undertake a gentle introduction to class field theory by investigating cyclotomic fields, including a proof of quadratic reciprocity. The results we'll discuss complement Les Saper's Grad Faculty seminar talk, though by no means is the latter a prerequisite. As a special treat, I will reveal a completely new, elementary proof of Fermat's Last Theorem.
Pam Miao Gu : Factorization tests and algorithms arising from counting modular forms and automorphic representations
- Graduate/Faculty Seminar ( 203 Views )A theorem of Gekeler compares the number of non-isomorphic automorphic representations associated with the space of cusp forms of weight $k$ on~$\Gamma_0(N)$ to a simpler function of $k$ and~$N$, showing that the two are equal whenever $N$ is squarefree. We prove the converse of this theorem (with one small exception), thus providing a characterization of squarefree integers. We also establish a similar characterization of prime numbers in terms of the number of Hecke newforms of weight $k$ on~$\Gamma_0(N)$. It follows that a hypothetical fast algorithm for computing the number of such automorphic representations for even a single weight $k$ would yield a fast test for whether $N$ is squarefree. We also show how to obtain bounds on the possible square divisors of a number $N$ that has been found to not be squarefree via this test, and we show how to probabilistically obtain the complete factorization of the squarefull part of $N$ from the number of such automorphic representations for two different weights. If in addition we have the number of such Hecke newforms for even a single weight $k$, then we show how to probabilistically factor $N$ entirely. All of these computations could be performed quickly in practice, given the number(s) of automorphic representations and modular forms as input. (Joint work with Greg Martin.)
Jianfeng Lu : Surface hopping: Mystery and opportunities for mathematicians
- Graduate/Faculty Seminar ( 201 Views )Surface hopping is a very popular approach in theoretical chemistry for mixed quantum-classical dynamics. Yes, the above sentence looks scary. Let us start over again ... We will examine from a mathematical point of view how stochastic trajectories can be used to approximate solutions to a Schrodinger equation (which is different from what Feynman did). Besides some applications in chemistry, this is a nice topic since it combines ideas from asymptotic analysis, applied probability, and applied harmonic analysis. The only background assumed in this talk is "separation of variables" (and of course some PDEs where separation of variables is applied to).
Yuriy Mileyko : Enter Skeleton: a brief overview of skeletal structures
- Graduate/Faculty Seminar ( 200 Views )Skeletal structures, such as medial axis and curve skeleton, are a particular class of shape descriptors. They have numerous applications in shape recognition, shape retrieval, animation, morphing, registration, and virtual navigation. This talk will give a brief overview of the medial axis and the curve skeleton. The focus will be on the properties of the two objects crucial to applications. We shall show that the rigorous mathematical definition of the medial axis has allowed for an extensive and successful study of such properties. The curve skeleton, on the other hand, is typically defined by the set of properties it has to possess. As a result, numerous methods for computing the curve skeleton have been proposed, each providing mostly experimental verification of the required properties. If time permits, I will mention my work on defining shape skeleta via persistent homology, thus providing a powerful platform for investigating their properties.
Robert Bryant : Curves, Surfaces, and Webs: An Episode in 19th Century Geometry
- Graduate/Faculty Seminar ( 189 Views )An old question about surfaces in 3-space is: When can a surface be written as a sum of two curves? For example, the elliptic paraboloid z = x^2 + y^2 can be thought of as the sum of the two space curves (x,0,x^2) and (0,y,y^2). However, a little thought shows that most surfaces in space should not be expressible parametrically as X(s) + Y(t) where X and Y are space curves. Surfaces for which this can be done are called `surfaces of translation'. This raises the question of determining whether or not this is possible for a given surface and in how many ways. This simple question leads to some surprisingly deep mathematics, involving complex analysis and overdetermined systems of PDE, and to other questions that are still open today. I will explain some of these developments (and what they have to do with my own work). There will even be a few pictures.
Shrawan Kumar : Topology of Lie groups
- Graduate/Faculty Seminar ( 186 Views )I will give an overview of some of the classical results on the topology of Lie groups, including Hopf's theorem which fully determines the cohomology algebra over the real numbers of any Lie group. We will also discuss how the deRham cohomology of a compact Lie group can be represented by bi-invariant forms. In addition, we will discuss first and the second homotopy groups of Lie groups.
Michael Nicholas : An 3rd order accurate method in 3D period electromagnetic scattering
- Graduate/Faculty Seminar ( 167 Views )Periodic electromagnetic scattering problems are interesting and challenging for various reasons. I will outline these problems and discuss my research in how to deal with singularities that arise. My methods include some analysis, some asymptotics, some numerics, a bunch of pictures I ripped off the web, and - as long as there are no follow up questions - a little bit of geometry.
William LeFew : Time-Reversal In Random Media: Current and Future Applications
- Graduate/Faculty Seminar ( 166 Views )This talk will discuss the basics of time-reversal theory in the context of wave propagation in random media. It will outline several of the interesting applications in the field including detection and encryption.
Didong Li : Subspace Approximations with Spherelets
- Graduate/Faculty Seminar ( 160 Views )Data lying in a high-dimensional ambient space are commonly thought to have a much lower intrinsic dimension. In particular, the data may be concentrated near a lower-dimensional subspace or manifold. There is an immense literature focused on approximating the unknown subspace, and in exploiting such approximations in clustering, data compression, and building of predictive models. Most of the literature relies on approximating subspaces using a locally linear, and potentially multiscale, dictionary. In this talk, we propose a simple and general alternative, which instead uses pieces of spheres, or spherelets, to locally approximate the unknown subspace. Theory is developed showing that spherelets can produce dramatically lower covering numbers and MSEs for many manifolds. We develop spherical principal components analysis (SPCA) and spherical multiscale methods. Results relative to state-of-the-art competitors show dramatic gains in ability to accurately approximate the subspace with orders of magnitude fewer components. This leads to substantial gains in data compressibility, few clusters and hence better interpretability, and much lower MSE based on small to moderate sample sizes. A Bayesian nonparametric model based on spherelets will be introduced as an application.
Anne Catlla : Mean, Lean ODE-fighting Machine
- Graduate/Faculty Seminar ( 156 Views )Our brains are composed of networks of cells, including neurons and glial cells. While the significance of neurons has been established by biologists, the role of glial cells is less understood. One hypothesis is that glial cells facilitate neural communication in nearby neurons, while suppressing communication among more distant neurons via a reaction-diffusion process. I consider this proposed mechanism using partial and ordinary differential equation models. By analyzing the ordinary differential equation model, I can determine conditions for this hypothesis to hold. I then compare the results of this analysis with simulations of the partial differential equation model and discuss the biological implications.
Shishi Luo : How I learned to stop worrying and love mathematical biology
- Graduate/Faculty Seminar ( 154 Views )Biology has given mathematicians many new problems to work on in the last half century and the role of mathematics in biology research is only increasing. Through a series of examples, ranging from coat pattern formation to the evolution of RNA viruses, I will illustrate the insight that a mathematical treatment can give to problems in biology and will also discuss the difficulties involved in doing mathematical biology.
Benoit Charbonneau : Instantons and reduction of order via the Nahm transform
- Graduate/Faculty Seminar ( 152 Views )The instanton equations appear in gauge theory and generalize both the Maxwell equations and the harmonic equation. Their study has been and continues to be a very fertile ground for interactions between physicists and mathematicians. The object of this talk is a description of instanton solutions on S^1xR^3 due to Hurtubise and myself using the Nahm transform, a non-linear transformation that takes a system of PDE and produces a system of ODE or even a system of algebraic equations. This description allows us to answer existence questions for calorons.
Joshua Cruz : An Introduction to the Riemann-Hilbert Correspondence
- Graduate/Faculty Seminar ( 147 Views )Early in the history of complex analysis, it was realized that there are no continuous versions of the square root or the logarithm on the entire complex plane; instead, analysts invented multi-valued functions to deal with these strange behaviors. The "graphs" of these multi-valued functions can get very interesting, and can be interpreted topologically. In general, the space of solutions to a "nice" system of holomorphic ordinary differential equations on the non-zero complex numbers will not be made up of functions, but of multi-functions. Studying these spaces of solutions have led to several ideas in algebraic topology, especially monodromy, and the relationship between systems of ODE and possible monodromies is called the Riemann-Hilbert Correspondence.
Lillian Pierce : Class numbers of quadratic number fields: a few highlights on the timeline from Gauss to today
- Graduate/Faculty Seminar ( 142 Views )Each number field (finite extension of the rational numbers) has an invariant associated to it called the class number (the cardinality of the class group of the field). Class numbers pop up throughout number theory, and over the last two hundred years people have been considering questions about the growth and divisibility properties of class numbers. Well focus on class numbers of quadratic extensions of the rationals, surveying some key results in the two centuries since the pioneering work of Gauss, and then turning to very recent joint work of the speaker with Roger Heath-Brown on averages and moments associated to class numbers of imaginary quadratic fields.
Robert Bryant : The geometry of periodic equi-areal sequences
- Graduate/Faculty Seminar ( 141 Views )A sequence of functions $f = (f_i)$ ($-\infty < i < \infty$) on a surface $S$ is said to be \emph{equi-areal} (or sometimes, \emph{equi-Poisson}) if it satisfies the relations $$ df_{i-1}\wedge df_i = df_i\wedge df_{i+1}\ (\not=0) $$ for all $i$. In other words, the successive pairs $(f_i,f_{i+1})$ are local coordinates on $S$ that induce the same area form on $S$, independent of $i$. One says that $f$ is \emph{$n$-periodic} if $f_i = f_{i+n}$ for all $i$. The $n$-periodic equi-areal sequences for low values of $n$ turn out to have close connections with interesting problems in both dynamical systems and in the theory of cluster algebras. In this talk, I will explain what is known about the classification (up to a natural notion of equivalence) of such sequences and their surprising relationships with differential geometry, cluster algebras, and the theory of overdetermined differential equations. I wont assume that the audience knows much differential geometry, just basic multi-variable calculus, and the emphasis will be on describing the interesting results rather than on technical details.