Punit Gandhi : Conceptual modeling of dryland vegetation patterns across timescales
- Mathematical Biology ( 18 Views )Strikingly regular, large-scale patterns of vegetation growth were first documented by aerial photography in the Horn of Africa circa 1950 and are now known to exist in drylands across the globe. The patterns often appear on very gently sloped terrain as bands of dense vegetation alternating with bare soil, and models suggest that they may be a strategy for maximizing usage of the limited water available. A particular challenge for modeling these patterns is appropriately resolving fast processes such as surface water flow during rainstorms while still being able to capture slow dynamics such as the uphill migration of the vegetation bands, which has been observed to occur on the scale of a band width per century. We propose a pulsed-precipitation model that treats rainstorms as instantaneous kicks to the soil water as it interacts with vegetation on the timescale of plant growth. We use a stochastic rainfall model with the influence of fast storm-level hydrology captured by the spatial distribution of the soil water kicks. The model allows for predictions about the influence of storm characteristics on the large-scale patterns. Analysis and simulations suggest that the distance water travels on the surface before infiltrating into the soil during a typical storm plays a key role in determining the spacing between the bands.
Niall Mangan : Identifying models from data
- Mathematical Biology ( 47 Views )Building models for biological, chemical, and physical systems has traditionally relied on domain specific intuition about which interaction and features most strongly influence a system. Statistical methods based in information criteria provide a framework to balance likelihood and model complexity. Recently developed for and applied to dynamical systems, sparse optimization strategies can select a subset of terms from a library that best describe data, automatically interfering model structure. I will discuss my group's application and development of data driven methods for model selection to 1) find simple statistical models to use wastewater surveillance to track the COVID pandemic and 2) recover chaotic systems models from data with hidden variables. I'll briefly discuss current preliminary work and roadblocks in developing new methods for model selection of biological metabolic and regulatory networks.
Stephan Huckemann : Statistical challenges in shape prediction of biomolecules
- Mathematical Biology ( 131 Views )The three-dimensional higher-order structure of biomolecules
determines their functionality. While assessing primary structure is
fairly easily accessible, reconstruction of higher order structure is
costly. It often requires elaborate correction of atomic clashes,
frequently not fully successful. Using RNA data, we describe a purely
statistical method, learning error correction, drawing power from a
two-scale approach. Our microscopic scale describes single suites by
dihedral angles of individual atom bonds; here, addressing the
challenge of torus principal component analysis (PCA) leads to a
fundamentally new approach to PCA building on principal nested spheres
by Jung et al. (2012). Based on an observed relationship with a
mesoscopic scale, landmarks describing several suites, we use Fréchet
means for angular shape and size-and-shape, correcting
within-suite-backbone-to-backbone clashes. We validate this method by
comparison to reconstructions obtained from simulations approximating
biophysical chemistry and illustrate its power by the RNA example of
SARS-CoV-2.
This is joint work with Benjamin Eltzner, Kanti V. Mardia and Henrik
Wiechers.
Literature:
Eltzner, B., Huckemann, S. F., Mardia, K. V. (2018):
Torus principal component analysis with applications to RNA
structure. Ann. Appl. Statist. 12(2), 1332?1359.
Jung, S., Dryden, I. L., Marron, J. S. (2012):
Analysis of principal nested spheres. Biometrika, 99 (3), 551-568
Mardia, K. V., Wiechers, H., Eltzner, B., Huckemann, S. F. (2022).
Principal component analysis and clustering on manifolds. Journal of
Multivariate Analysis, 188, 104862,
https://www.sciencedirect.com/science/article/pii/S0047259X21001408
Wiechers, H., Eltzner, B., Mardia, K. V., Huckemann, S. F. (2021).
Learning torus PCA based classification for multiscale RNA backbone
structure correction with application to SARS-CoV-2. To appear in the
Journal of the Royal Statistical Society, Series C,
bioRxiv https://doi.org/10.1101/2021.08.06.455406
Casey Diekman : Data Assimilation and Dynamical Systems Analysis of Circadian Rhythmicity and Entrainment
- Mathematical Biology ( 81 Views )Circadian rhythms are biological oscillations that align our physiology and behavior with the 24-hour environmental cycles conferred by the Earth’s rotation. In this talk, I will discuss two projects that focus on circadian clock cells in the brain and the entrainment of circadian rhythms to the light-dark cycle. Most of what we know about the electrical activity of circadian clock neurons comes from studies of nocturnal (night-active) rodents, hindering the translation of this knowledge to diurnal (day-active) humans. In the first part of the talk, we use data assimilation and patch-clamp recordings from the diurnal rodent Rhabdomys pumilio to build the first mathematical models of the electrophysiology of circadian neurons in a day-active species. We find that the electrical activity of circadian neurons is similar overall between nocturnal and diurnal rodents but that there are some interesting differences in their responses to inhibition. In the second part of the talk, we use tools from dynamical systems theory to study the reentrainment of a model of the human circadian pacemaker following perturbations that simulate jet lag. We show that the reentrainment dynamics are organized by invariant manifolds of fixed points of a 24-hour stroboscopic map and use these manifolds to explain a rapid reentrainment phenomenon that occurs under certain jet lag scenarios.
Elliot Cartee : Control-Theoretic Models of Environmental Crime
- Mathematical Biology ( 141 Views )We present two models of perpetrators' decision-making in extracting resources from a protected area. It is assumed that the authorities conduct surveillance to counter the extraction activities, and that perpetrators choose their post-extraction paths to balance the time/hardship of travel against the expected losses from a possible detection. In our first model, the authorities are assumed to use ground patrols and the protected resources are confiscated as soon as the extractor is observed with them. The perpetrators' path-planning is modeled using the optimal control of randomly-terminated process. In our second model, the authorities use aerial patrols, with the apprehension of perpetrators and confiscation of resources delayed until their exit from the protected area. In this case the path-planning is based on multi-objective dynamic programming. Our efficient numerical methods are illustrated on several examples with complicated geometry and terrain of protected areas, non-uniform distribution of protected resources, and spatially non-uniform detection rates due to aerial or ground patrols.
Sharon Lubkin : Notochord eccentricity and its relation to cell packing
- Mathematical Biology ( 194 Views )The notochord, the defining feature of chordates, is a pressurized tube which actuates elongation of the chordate embryo. The zebrafish notochord consists of large vacuolated cells surrounded by a thin sheath. We characterized the patterns of the cells’ packing, and their relationship to the known regular patterns from the study of foams, and irregular patterns in a gel bead system. Disruption of the wild type packing pattern leads to developmental defects. We characterize the bifurcations between the relevant regular patterns in terms of nondimensional geometrical and mechanical ratios, and suggest an important developmental role for the eccentric "staircase" pattern.
John Gemmer : Nature’s Forms are Frilly, Flexible and Functional
- Mathematical Biology ( 215 Views )Many patterns in Nature and industry arise from the system minimizing an appropriate energy. Torn plastic sheets and growing leaves provide striking examples of pattern forming systems which can transition from single wavelength geometries (leaves) to complex fractal-like shapes (lettuce). These fractal-like patterns seem to have many length scales, i.e. the same amount of extra detail can be seen when looking closer (“statistical self-similarity”). It is a mystery how such complex patterns could arise from energy minimization alone. In this talk I will address this puzzle by showing that such patterns naturally arise from the sheet adopting a hyperbolic non-Euclidean geometry. However, there are many different hyperbolic geometries that the growing leaf could select. I will show using techniques from analysis, differential geometry and numerical optimization that the fractal like patterns are indeed the natural minimizers for the system. I will also discuss the implications of our work to developing shape changing soft matter which can be implemented in soft machines.
Aaron Fogelson : Two Examples of Chemical Modulation of the Properties and Dynamics of Physiological Gels: Fibrin Formation and Mucin Swelling
- Mathematical Biology ( 107 Views )Gels formed from mixtures of polymers and solvent are ubiquitous in physiological systems. The structure and properties of a gel can change dramatically in response to chemical modulation. Two examples of the influence of chemistry on gel properties will be discussed. The structure of fibrin gels that form during blood clotting is strongly influenced by the concentration of the enzyme thrombin that produces the fibrin monomers from which the gel is built. Presumably at higher thrombin concentrations, fibrin monomers are produced more rapidly from the precursor fibrinogen molecules. I will present an analysis of a possible mechanism of fibrin branching that can explain the sensitivity of fibrin structure to the rate of supply of monomers. Mucin gel is released from vesicles in goblet cells. During this exocytotic process, the polyelectrolyte mucin gel swells to many times its original volume at a very rapid rate. I will present a model in which this swelling is triggered by an exchange of divalent calcium ions in the vesicle and monovalent sodium ions in the extracellular space, and in which the ion concentrations and the rheological properties of the mucin gel determine its equilibrium size and the dynamics of its swelling.
Aziz Yakubu : Mathematical Models of Malaria with Applications to Mali and USA
- Mathematical Biology ( 127 Views )In this talk, we will introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during wet season while minimizing the potential harmful effects of drug overdose, we will define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we will provide protocols that lead to small number of first malaria episodes during the wet season than the protocol of Coulibaly et al. In the second part of the talk, we will use our malaria model to "capture" the 2013 Centers of Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the US. Furthermore; we will use our "fitted" malaria models for the top 20 countries of malaria acquisition by US residents to study the impact of protecting US residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the 2013 CDC malaria surveillance data.
Avner Friedman : Conservation laws in mathematical biology
- Mathematical Biology ( 100 Views )Many mathematical models in biology can be described by a system of hyperbolic conservation laws with nonlinear and nonlocal coefficients. In order to determine these coefficients one needs to solve auxiliary systems of equations, for example elliptic or parabolic PDEs, which are coupled to the hyperbolic equations. In this talk we give several examples: The growth of tumors, the shrinking of dermal wounds, T cell differentiation, the growth of drug resistant bacteria in hospitals, and the transport of molecules along microtubules in axon. In these examples, the auxiliary systems range from elliptic-parabolic free boundary problems to nonlocal ODEs. Motivated by biological questions, we shall describe mathematical results regarding properties of the solutions of the conservation laws. For example, we shall determine the stability of spherical tumors and the growth of fingers; we shall discuss conditions for shrinking of the wound; suggest how to reduce the growth of drug resistant bacteria, and derive biologically motivated asymptotic behavior of solutions.