Quicklists
public 01:29:50

Robert Guy : Models of Cytoplasmic Streaming in Motile Amoeboid Cells

  -   Mathematical Biology ( 97 Views )

Inside every eukaryotic cell is the nucleus, organelles, and the surrounding cytoplasm, which typically accounts for 50% of the cell volume. The cytoplasm is a complex mixture of water, protein, and a dynamic polymer network. Cells use cytoplasmic streaming to transmit chemical signals, to distribute nutrients, and to generate forces involved in locomotion. In this talk we present two different models related to cytoplasmic streaming in amoeboid cells. In the first part of the talk, we present a computational model to describe the dynamics of blebbing, which occurs when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol towards the area of detachment and the local expansion of the cell membrane. The model is used to explore the relative roles in bleb dynamics of cytoplasmic viscosity, permeability of the cytoskeleton, and elasticity of the membrane and cytoskeleton. In the second part of the talk we examine how flow-induced instabilities of cytoplasm are related to the structural organization of the giant amoeboid cell Physarum polycephalum. We use a multiphase flow model that treats both the cytosol and cytoskeleton as fluids each with its own material properties and internal forces, and we discuss instabilities of the sol/gel mixture that produce flow channels within the gel. We analyze a reduced model and offer a new and general explanation for how fluid flow is involved in cytoskeletal reorganization.

public 01:29:53

Eric Lauga : Optimality in cellular hydrodynamics

  -   Mathematical Biology ( 95 Views )

Fluid mechanics plays a crucial role in many cellular processes. One example is the external fluid mechanics of motile cells such as bacteria, spermatozoa, algae, and essentially half of the microorganisms on earth. The most commonly-studied organisms exploit the bending or rotation of a small number of flagella (short whip-like organelles, length scale from a few to tens of microns) to create fluid-based propulsion. Ciliated microorganisms swim by exploiting the coordinated surface beating of many cilia (which are short flagella) distributed along their surface. After a short introduction to the fundamentals of fluid-based locomotion on small scales, we pose separate optimization problems addressing the optimal geometries and locomotion gaits of low-Reynolds-number swimmers. First, we characterize the optimal dynamics of simple flapping swimmers with two degrees of freedom. Second, we derive analytically and computationally the optimal waveform of an elastic flagellum, such as the one employed by eukaryotic cells for propulsion. Third, we investigate the optimal shapes of helical propellers, and use our results to help rationalize the shape selection mechanism in bacterial flagella. Finally, we characterize the optimal locomotion by surface distortions of blunt swimmers, and demonstrate the appearance of waves, reminiscent of the metachronal waves displayed by ciliated organisms.

public 01:34:20

Tom Witelski : The fluid dynamics of blinking

  -   Mathematical Biology ( 105 Views )

public 01:14:52

Joshua Vogelstein : Consistent Graph Classification applied to Human Brain Connectome Data

  -   Mathematical Biology ( 171 Views )

Graphs are becoming a favorite mathematical object for representation of data. Yet, statistical pattern recognition has focused almost entirely on vector valued data in Euclidean space. Graphs, however, live in graph space, which is non-Euclidean. Thus, most inference techniques are not even defined for graph valued data. Previous work in the classification of graph-valued data typically follows one of two recipes. (1) Vectorize the adjacency matrices of the graphs, and apply standard machine learning techniques. (2) Compute some number of graph invariants (e.g., clustering coefficient, or degree distribution) for each graph, and then apply standard machine learning techniques. We follow a different recipe based in the probabilistic theory of pattern recognition. First, we define a joint graph-class model. Given this model, we derive classifiers which we prove are consistent; that is, they converge to the Bayes optimal classifier. Specifically, we build two consistent classifiers for graph valued data, a parametric and a non-parametric version. In a sense, these classifiers span the spectrum of complexity, the former is consistent for graphs sampled from relatively simple random graph distributions, the latter is consistent for graphs sampled from (nearly) any random graph distribution. Although both classifiers assume that all our graphs have labeled vertices, we generalize these results to also incorporate unlabeled graphs, as well as weighted and multigraphs. We apply these graph classifiers to human brain data. Specifically, using diffusion MRI, we can obtain large brain-graphs (10,000 vertices) for each subject, where vertices correspond to voxels. We then coarsen the graphs spatially to obtain smaller (70 vertex) graphs per subject. Using <50 subjects, we are able to achieve nearly 85% classification accuracy, with results interpretable to neurobiologists with regard to the brain regions of interest.

public 01:14:47

Jean Clairambault : Drug resistance in cancer: biological and medical issues, and continuous models of structured population dynamics

  -   Mathematical Biology ( 120 Views )

Considering cancer as an evolutionary disease, we aim at understanding the means by which cancer cell populations develop resistance mechanisms to drug therapies, in order to circumvent them by using optimised therapeutic combinations. Rather than focusing on molecular mechanisms such as overexpression of intracellular drug processing enzymes or ABC transporters that are responsible for resistance at the individual cell level, we propose to introduce abstract phenotypes of resistance structuring cancer cell populations. The models we propose rely on continuous adaptive dynamics of cell populations, and are amenable to predict asymptotic evolution of these populations with respect to the phenotypic traits of interest. Drug-induced drug resistance, the question we are tackling from a theoretical and experimental point of view, may be due to biological mechanisms of different natures, mere local regulation, epigenetic modifications (reversible, nevertheless inheritable) or genetic mutations (irreversible), according to the extent to which the genome of the cells in the population is affected. In this respect, the models we develop are more likely to be biologically corresponding to epigenetic modifications, although eventual induction of emergent resistant cell clones due to mutations under drug pressure is not to be completely excluded. From the biologist's point of view, we study phenotypically heterogeneous, but genetically homogeneous, cancer cell populations under stress by drugs. According to the cell populations at stake and to the exerted drug pressure, is drug resistance in cancer a permanently acquired phenotypic trait or is it reversible? Can it be avoided or overcome by rationally (model-guided) designed combinations of drugs? These are some of the questions we will try to answer in a collaboration between a team of mathematicians and another one of biologists, both dealing with cancer and Darwinian - possibly also Lamarckian - evolution of cell populations.

public 01:14:42

Sandy Anderson : Hijacking Homeostatsis: How Heterogeneity Drives Tumor Progression and Treatment Failure

  -   Mathematical Biology ( 96 Views )

Heterogeneity in cancer is an observed fact, both genotypically and phenotypically. Cell-cell variation is seen in almost all aspects of cancer from early development all the way through to invasion and subsequent metastasis. Our current understanding of this heterogeneity has mainly focused at the genetic scale with little information on how this variation translates to actual changes in cell phenotypic behavior. Given that many genotypes can lead to the same cellular phenotype, it is important that we quantify the range and scope of this heterogeneity at the phenotypic scale as ultimately this variability will dictate the aggressiveness of the tumor and its treatability. Central to our understanding of this heterogeneity is how the tumor cells interact with each other and with their microenvironment. Since it is these very interactions that drive selection and that ultimately define the ecology of the tissue in which the tumor is developing. Considering an organ as an ecological system, means that we should view normal tissue homeostasis as an equilibrium that cancer cells must disrupt if they are to be successful. Disruption of this equilibrium is often one of the first events in cancer development, as the normal control mechanisms of the tissue are damaged or ignored. We will discuss the interplay between homeostasis, heterogeneity, evolution and ecology in cancer progression and treatment failure with an emphasis on the metabolism of breast cancer.

public 01:14:49

Leonid Berlyand : PDE/ODE models of motility in active biosystems

  -   Mathematical Biology ( 107 Views )

In the first part of the talk we present a review of our work on PDE models of swimming bacteria. First we introduce a stochastic PDE model for a dilute suspension of self-propelled bacteria and obtain an explicit asymptotic formula for the effective viscosity (E.V.) that explains the mechanisms of the drastic reduction of E.V.. Next, we introduce a model for semi-dilute suspensions with pairwise interactions and excluded volume constraints. We compute E.V. analytically (based on a kinetic theory approach) and numerically. Comparison with the dilute case leads to a phenomenon of stochasticity arising from a deterministic system. We develop a ODE/PDE model that captures the phase transition, an appearance of correlations and large scale structures due to interbacterial interactions. Collaborators: S. Ryan, B. Haines, (PSU students); I. Aronson, A. Sokolov, D. Karpeev (Argonne); In the second part of the talk we discuss a system of two parabolic PDEs arising in modeling of motility of eukaryotic cells on substrates. The two key properties of this system are (i) presence of gradients in the coupling terms (gradient coupling) and (ii) mass (volume) preservation constraints. We derive the equation of the motion of the cell boundary, which is the mean curvature motion perturbed by a novel nonlinear term and prove that the sharp interface property of initial conditions is preserved in time. This novel term leads to surprising features of the motion of the interface such as discontinuities of the interface velocity and hysteresis. This is joint work with V. Rybalko and M. Potomkin.