Quicklists
public 01:14:42

Rick Durrett : Overview of the semester

  -   Uploaded by root ( 66 Views )

public 01:14:46

David Basanta : Computational modeling of bone metastatic prostate cancer

  -   Uploaded by root ( 103 Views )

public 01:29:48

Jake Taylor-King : Generalized Jump Processes and Osteocyte Network Formation

  -   Uploaded by root ( 86 Views )

My talk will have two parts. PART I, From Birds to Bacteria: Generalised Velocity Jump Processes. There are various cases of animal movement where behaviour broadly switches between two modes of operation, corresponding to a long distance movement state and a resting or local movement state. In this talk, I will give a mathematical description of this process, adapted from Friedrich et. al. (2006). The approach allows the specification any running or waiting time distribution along with any angular and speed distributions. The resulting system of partial integro-differential equations are tumultuous and therefore it is necessary to both simplify and derive summary statistics. We derive an expression for the mean squared displacement, which shows good agreement with experimental data from the bacterium Escherichia coli and the gull Larus fuscus. Finally a large time diffusive approximation is considered via a Cattaneo approximation (Hillen, 2004). This leads to the novel result that the effective diffusion constant is dependent on the mean and variance of the running time distribution but only on the mean of the waiting time distribution. We also consider the Levy regime where the variance of the running distribution tends to infinity. This leads to a fractional diffusion equation for superdiffusive Levy walks and can be solved analytically. Our theory opens up new perspectives both for the systematic derivation of such equations, and for experimental data analysis of intermittent motion. I will also briefly discuss recent developments (by other researchers) within the field of velocity jump processes. PART II: Modelling Osteocyte Network Formation: Healthy and Cancerous Environments. Advanced prostate, breast, and lung cancer can metastasize to bone. In pathological bone, the highly regulated bone remodeling signaling pathway is disrupted. Within bone dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone formation. In the presence of a cancerous microenvironment, the morphology of this network changes. Commonly osteocytes appear to be either overdifferentiated (i.e., there are more dendrites) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, preliminary studies measuring the number of osteocytes per unit area using pathology slides show that the number density of osteocytes change from healthy to metastatic prostate and breast cancer xenografted mice. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and number density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We consider variations of our model to test specific physiological hypotheses related to osteoblast differentiation; for example we can predict how changing measurable biological parameters, such as rates of bone secretion, rates of dendrite growth and rates of osteoblast differentiation can allow for qualitatively different network morphologies, and vice versa. We thenuse our model to hypothesize reasons for the limited efficacy of zoledronate therapy on metastatic breast cancer.

public 01:14:51

None : NO TALK

  -   Uploaded by root ( 70 Views )

public 01:29:57

Jim Keener : Mechanisms of length regulation of flagella in Salmonella

  -   Uploaded by root ( 67 Views )

Abstract: The construction of flagellar motors in motile bacteria such as Salmonella is a carefully regulated genetic process. Among the structures that are built are the hook and the filament. The length of the hook is tightly controlled while the length of filaments is less so. However, if a filament is broken off it will regrow, while a broken hook will not regrow. The question that will be addressed in this talk is how Salmonella detects and regulates the length of these structures. This is related to the more general question of how physical properties (such as size or length) can be detected by chemical signals and what those mechanisms are. In this talk, I will present mathematical models for the regulation of hook and filament length. The model for hook length regulation is based on the hypothesis that the hook length is determined by the rate of secretion of the length regulatory molecule FliK and a cleavage reaction with the gatekeeper molecule FlhB. A stochastic model for this interaction is built and analyzed, showing excellent agreement with hook length data. The model for filament length regulation is based on the hypothesis that the growth of filaments is diffusion limited and is measured by negative feedback involving the regulatory protein FlgM. Thus, the model includes diffusion on a one-dimensional domain with a moving boundary, coupled with a negative feedback chemical network. The model shows excellent qualitative agreement with data, although there are some interesting unresolved issues related to the quantitative results.

public 01:14:42

Harsh Jain : A delay differential equation model of cancer chemotherapy, with applications to ovarian carcinoma treatment

  -   Uploaded by root ( 69 Views )

The use of delay differential equations (DDEs) to study biological phenomena has a long history, when the rate of change of model variables depends their previous history. Today, DDEs occupy a central place in models of infectious disease dynamics, epidemiology, ecology and tumor growth. In this talk, I will present a delayed partial differential equation (PDE) model of tumor growth and treatment. The model accounts for cell cycle arrest and cell death induced by chemotherapy, and explicitly includes intracellular signaling pathways relevant to drug action. The model is simplified to give a 1D hyperbolic PDE, which is further reduced to a nonlinear, non-autonomous DDE by projecting along characteristics. Necessary and sufficient conditions for the global stability of the cancer-free equilibrium are derived and conditions under which the system evolves to periodic solutions are determined. This has clinical implications since it leads to a lower bound for the amount of therapy required to affect a cure. Finally, I will present a clinical application of the model, by applying it to the treatment of ovarian cancers. Two types of drugs are considered – platinum-based chemotherapeutic agents that are the current standard of care for most solid tumors, and small molecule cell death inducers that are currently under development. The model is calibrated versus in vitro experimental results, and is then used to predict optimal doses and administration time scheduling for the treatment of a tumor growing in vivo.

public 01:29:52

Badal Joshi : A Markov model for pole formation

  -   Uploaded by root ( 74 Views )