Quicklists
public 01:14:50

Ned Wingreen : Why are chemotaxis receptors clustered but other receptors aren’t?

  -   Mathematical Biology ( 96 Views )

The chemotaxis network of bacteria such as E. coli is remarkable for its sensitivity to minute relative changes in chemical concentrations in the environment. Indeed, E. coli cells can detect concentration changes corresponding to only ~3 molecules in the volume of a cell. Much of this acute sensitivity can be traced to the collective behavior of teams of chemoreceptors on the cell surface. Instead of receptors switching individually between active and inactive configurations, teams of 6-20 receptors switch on and off, and bind or unbind ligand, collectively. Similar to the binding and unbinding of oxygen molecules by tetramers of hemoglobin, the result is a sigmoidal binding curve. Coupled with a system for adaptation that tunes the operating point to the steep region of this sigmoidal curve, the advantage for chemotaxis is gain – i.e., small relative changes in chemical concentrations are transduced into large relative changes in signaling activity (specifically, the rate of phosphorylation of the response regulator CheY).  However, something is troubling about this simple explanation: in addition to providing gain, the coupling of receptors into teams also increases noise, and the net result is a decrease in the signal-to-noise ratio of the network. Why then are chemoreceptors observed to form cooperative teams? We present a novel hypothesis that the run-and-tumble chemotactic strategy of bacteria leads to a “noise threshold”, below which noise does not significantly decrease chemotactic velocity, but above which noise dramatically decreases this velocity.

public 01:29:49

Anette Hosoi : Small Swimming Lessons: Optimizing Low Reynolds Number Locomotion

  -   Mathematical Biology ( 90 Views )

ABSTRACT: The past decade has seen a number of engineering innovations that make construction of devices of micro- and even nanometric dimensions feasible. Hence, there is a growing interest in exploring new and efficient ways to generate propulsion at these small scales. Here we explore optimization of one particular type of low Reynolds number propulsion mechanism – flagella. Beyond the general challenges associated with optimization, there are a number of issues that are unique to swimming at low Reynolds numbers. At small scales, the fluid equations of motion are linear and time-reversible, hence reciprocal motion – i.e., strokes that are symmetric with respect to time reversal – cannot generate any net translation (a limitation commonly referred to as the Scallop Theorem). One possible way to break this symmetry is through carefully chosen morphologies and kinematics. One symmetry-breaking solution commonly employed by eukaryotic microorganisms is to select nonreciprocal stroke patterns by actively generating torques at fixed intervals along the organism. Hence, we will address the question: For a given morphology, what are the optimal kinematics? In this talk we present optimal stroke patterns using biologically inspired geometries such as single-tailed spermatozoa and the double-tail morphology of Chlamydomonas, a genus of green alga widely considered to be a model system in molecular biology.

public 02:34:48

REU students : student presentations

  -   Mathematical Biology ( 90 Views )

public 01:29:50

Katarzyna Rejniak : Fluid dynamics in cancer cell biology

  -   Mathematical Biology ( 113 Views )

Eukaryotic cell microenvironment (inner and outer) is composed in large parts from fluids that interact with solid and elastic bodies, whereas it is the cell cytoplasm, cytoskeleton and basal membrane; the interstitial fluid interpenetrating the stroma and tumor cells; or blood flow carrying the immune or circulating tumor cells. I will discuss the use of two fluid-structure interactions methods, the immersed boundary and the regularized Stokeslets, in applications dealing with the tumor development and treatment. First model operates on the cellular scale and will be used to model various cell processes, such as cell growth, division or death, during the cellular self-organization into a normal mammary acinus, a 3D in vitro structure recapitulating the morphology of breast cysts (acini). I will discuss model development, parameterization and tuning with the experimental data, as well as their subsequent use to investigate the link between morphogenesis of epithelial mutants and molecular alterations of tumor cells. Second model acts on the tissue level, and will be used to investigate the relation between tumor tissue structure and efficacy of anticancer drugs in the context of interstitial fluid flow. I will present simulation results showing non-linear relation between tumor tissue structure and effectiveness of drug penetration. I will also discuss how tumor tissue metabolic state(its oxygenation and acidity) becomes modified due to actions of chemotherapeutic drugs leading to the emergence of tumor zones with potentially drug-resistant cells and/or to tumor areas that are not exposed to drugs at all. Both of these phenomena can contribute to the moderateclinical success of many anticancer drugs.

public 01:14:48

Laura Miller : The fluid dynamics of jellyfish swimming and feeding

  -   Mathematical Biology ( 103 Views )

The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In this presentation, we develop and test mathematical models describing the pulsing dynamics and the resulting fluid flow generated by the benthic upside down jellyfish, Cassiopea spp., and the pelagic moon jellyfish, Aurelia spp. The kinematics of contraction and distributions of pulse frequencies were obtained from videos and used as inputs into numerical simulations. Particle image velocimetry was used to obtain spatially and temporally resolved flow fields experimentally. The immersed boundary method was then used to solve the fluid-structure interaction problem and explore how changes in morphology and pulsing dynamics alter the resulting fluid flow. For Cassiopea, significant mixing occurs around and directly above the oral arms and secondary mouths. We found good agreement between the numerical simulations and experiments, suggesting that the presence of porous oral arms induce net horizontal flow towards the bell and mixing. For Aurelia, maximum swim speeds are generated when the elastic bell is resonating at its natural frequency. Alternating vortex rings can also enhance swimming speed and efficiency.

public 01:14:42

Hans Othmer : A hybrid model of tumor-stromal interactions in breast cancer

  -   Mathematical Biology ( 127 Views )

Ductal carcinoma in situ (DCIS) is an early stage non-invasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. We will discuss a mathematical model that incorporates the cross-talk between stromal and tumor cells, and which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-$\beta$ signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation, and describe a hybrid model for the interaction of cells with the tumor microenvironment. The analysis sheds light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggests how epigenetic changes in transformed cells affect tumor progression.

public 01:29:51

Franziska Michor : Evolutionary dynamics of cancer

  -   Mathematical Biology ( 122 Views )

Cancer emerges due to an evolutionary process in somatic tissue. The fundamental laws of evolution can best be formulated as exact mathematical equations. Therefore, the process of cancer initiation and progression is amenable to mathematical investigation. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a mathematical approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to deduce the temporal sequence of genetic events during tumorigenesis from crosssectional genomic data of tumors at their fully transformed stage. When applied to a dataset of 70 advanced colorectal cancers, our algorithm accurately predicts the sequence of APC, KRAS, and TP53 mutations previously defined by analyzing tumors at different stages of colon cancer formation. We further validate the method with glioblastoma and leukemia sample data and then apply it to complex integrated genomics databases, finding that high-level EGFR amplification appears to be a late event in primary glioblastomas. RESIC represents the first evolutionary mathematical approach to identify the temporal sequence of mutations driving tumorigenesis and may be useful to guide the validation of candidate genes emerging from cancer genome surveys.

public 01:14:56

Sylvie Méléard : Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks

  -   Mathematical Biology ( 105 Views )

This talk presents a work in progress with Sylvain Billard, Regis Ferriere and Chi Viet Tran. How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. The dynamics is ruled by births and deaths, mutations at birth and competition between individuals. The ecological phenomena depend only on the trait values but we expect that these effects influence the generation and maintenance of neutral variation. Considering a large population limit with rare mutations, but where the marker mutates faster than the trait, we prove the convergence of our stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process. This process restricted to the trait space is the Trait Substitution Sequence introduced by Metz et al. (1996). During the invasion of a favorable mutation, the marker associated with this favorable mutant is hitchhiked, creating a genetical bottleneck. The hitchhiking effect and how the neutral diversity is restored afterwards are studied. We show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions and that time-scale separation phenomena occur. The SFVP has important and relevant implications that are discussed and illustrated by simulations. We especially show that after a selective sweep, the neutral diversity restoration depend on mutations, ecological parameters and trait values.

public 01:34:42

Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers

  -   Mathematical Biology ( 211 Views )

Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment‑naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.