Quicklists
public 01:34:46

Gregory Herschlag : Optimal reservoir conditions for material extraction across pumping and porous channels

  -   Mathematical Biology ( 114 Views )

In this talk, I will discuss a new result in fluid flows through channels with permeable membranes with simple pumping dynamics. Fluid will be exchanged and metabolized in a simple reservoir and I will demonstrate the existence of optimal reservoir properties that may either maximize or minimized the amount of fluid being extracted across the channel walls. The biological relevance of this work may be seen by noting that all living organisms of a sufficient size rely on complex systems of tubular networks to efficiently collect, transport and distribute nutrients or waste. These networks exchange material with the interstitium via embedded channels leading to effective permeabilities across the wall separating the channel interior from the interstitium. In many invertebrates, for example, respiratory systems are made of complex tracheal systems that branch out through the entire body allowing for passive exchange of oxygen and carbon dioxide. In many of these systems, certain animals utilize various pumping mechanisms that alter the flow of the air or fluid being transported. Although the net effect of pumping of the averaged rates of fluid flow through the channel is typically well understood, it is still a largely open problem to understand how, and in what circumstances, pumping enables and enhances the exchange of material across channel walls. It has been demonstrated experimentally, for example, that when certain insects flap their wings, compression of the trachea allow for more efficient oxygen extraction, however it is unclear if this pumping is optimized for flight, oxygen uptake or neither, and understanding this problem quantitatively will shed insight on this biological process. Many of these interesting scenarios occur at low Reynolds number and this regime will be the focus of the presentation.

public 01:29:50

Mark Alber : Modeling elastic properties of cells and fibrin networks

  -   Mathematical Biology ( 118 Views )

Viscoelastic interactions of Myxococcus xanthus cells in a low-density domain close to the edge of a swarm have been recently studied in [1] using a combination of a cell-based three-dimensional Subcellular Element (SCE) model [1,2] and cell-tracking experiments. The model takes into account the flexible nature of M. xanthus as well as the effects of adhesion between cells arising from the interaction of the capsular polysaccharide covering two cells in contact with each other. New image and dynamic cell curvature analysis algorithms were used to track and measure the change in cell shapes that occur as flexible cells undergo significant bending during collisions resulting in direct calibration of the model parameters. It will be shown in this talk that flexibility of cells and the adhesive cell–cell and cell–substrate interactions of M. xanthus together with cell to aspect-ratio and directional reversals [3], play an important role in smooth cell gliding and more efficient swarming. In the second part of the talk results of the analysis of the three dimensional structures of fibrin networks, with and without cells, reconstructed from two-dimensional z-stacks of confocal microscopy sections using novel image analysis algorithms, will be presented. These images were used to establish microstructure-based models for studying the relationship between the structural features and the mechanical properties of the fibrin networks in blood clots. The change in the fibrin network alignment under applied strain and the elastic modulus values will be shown to agree well with the experimental data [4]. 1. C.W. Harvey, F. Morcos, C.R. Sweet, D. Kaiser, S. Chatterjee, X. Lu, D. Chen and M. Alber [2011], Study of elastic collisions of M. xanthus in swarms, Physical Biology 8, 026016. 2. C.R. Sweet, S. Chatterjee, Z. Xu, K. Bisordi, E.D. Rosen and M. Alber [2011], Modeling Platelet-Blood Flow Interaction Using Subcellular Element Langevin Method, J R Soc Interface, 2011 May 18. [Epub ahead of print], doi: 10.1098/rsif.2011.0180. 3. Y. Wu, Y. Jiang, D. Kaiser and M. Alber [2009], Periodic reversal of direction allows Myxobacteria to swarm, Proc. Natl. Acad. Sci. USA 106 4 1222-1227. 4. E. Kim, O.V. Kim, K.R. Machlus, X. Liu, T. Kupaev, J. Lioi, A.S. Wolberg, D.Z. Chen, E.D. Rosen, Z. Xu and M. Alber [2011], Soft Matter 7, 4983-4992.

public 01:14:49

Mark Alber : Multi-scale Modeling of Bacterial Swarming

  -   Mathematical Biology ( 117 Views )

The ability of animals to self-organize into remarkable patterns of movement is seen throughout nature from herds of large mammals, to flocks of birds, schools of fish, and swarms of insects. Remarkably, patterns of collective movement can be seen even in the simplest forms of life such as bacteria. M. xanthus are common soil bacteria that are among the most “social" bacteria in nature. In this talk clustering mechanism of swarming M. xanthus will be described using combination of experimental movies and stochastic model simulations. Continuous limits of discrete stochastic dynamical systems simulating cell aggregation will be described in the form of reaction-diffusion and nonlinear diffusion equations. Surface motility such as swarming is thought to precede biofilm formation during infection. Population of bacteria P. aeruginosa, major infection in hospitals, will be shown to efficiently propagate as high density waves that move symmetrically as rings within swarms towards the extending tendrils. Multi-scale model simulations suggest a mechanism of wave propagation as well as branched tendril formation at the edge of the population that depend upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. This collective mechanism of cell- cell coordination was recently shown to moderate swarming direction of individual bacteria to avoid a toxic environment. In the last part of the talk a three-dimensional multiscale modeling approach will be described for studying fluid–viscoelastic cell interaction during blood clot formation.

public 01:29:51

Karin Leiderman : Mathematical Modeling of Thrombosis

  -   Mathematical Biology ( 107 Views )

public 01:34:46

Guillaume Lajoie : Artificially-induced synaptic plasticity in motor cortex: a theoretical model of a bidirectional brain-computer interface

  -   Mathematical Biology ( 119 Views )

Experiments on macaque monkeys show that spike-triggered stimulation performed by a Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen synaptic connections between distant neural sites in Motor Cortex (MC) and even between MC and spinal cord, with changes that last several days. Here, a neural implant records from some neurons in MC and electrically stimulates others after set delays. The working hypothesis is that this stimulation procedure, which interacts with the very fast spiking activity of cortical circuits (on the order of milliseconds), induces changes mediated by synaptic plasticity mechanisms on much longer timescales (hours and days). The field of online, closed-loop BBCI's is rapidly evolving, with applications ranging from a science-oriented tool to clinical treatments of motor injuries. However, with the enhanced capability of novel devices that can record and stimulate an ever-growing number of neural sites comes growing complexity. It is therefore crucial to develop a theoretical understanding of the effects of closed-loop artificial stimulation in the highly recurrent neural circuits found in cortex, and how such protocols affect functional cotex-to-muscle mappings across a range of timescales. In parallel with ongoing experiments, we are developing a mathematical model of recurrent MC networks with probabilistic spiking mechanisms and spike-time-dependent plastic synapses (STDP) capable of capturing both neural and synaptic activity statistics relevant to BBCI protocols. This model successfully reproduces key experimental results and we use analytical derivations to predict optimal operational regimes for BBCIs. We make experimental predictions concerning the efficacy of spike-triggered stimulation in different regimes of cortical activity such as awake behaving states or sleep. Importantly, this work provides a first step toward a theoretical framework aimed at the design and development of next-generations applications of BBCI's.

public 01:14:48

Steven Baer : Multiscale Modeling of Neural Subcircuits and Feedback Mechanisms in the Outer Plexiform Layer of the Retina

  -   Mathematical Biology ( 128 Views )

Visual processing begins in the outer plexiform layer of the retina, where
bipolar, horizontal, and photoreceptor cells interact. In vertebrates, the
onset of dim backgrounds can enhance small spot flicker responses of
retinal horizontal cells. This flicker response is called background-
induced flicker enhancement. The underlying mechanism for the feedback
is unclear but competing hypotheses have been proposed. One is the GABA
hypothesis, which states that the inhibitory neurotransmitter GABA,
released from horizontal cells, mediates the feedback by blocking calcium
channels. Another is the ephaptic hypothesis, which contends that calcium
entry is regulated by changes in the electrical potential within the
intersynaptic space between cones and horizontal cells. In this study, a
continuum spine model of cone-horizontal cell synaptic circuitry is
formulated. The model captures two spatial scales - the scale of an
individual synapse and the scale of the receptive field involving hundreds
to thousands of synapses. We show that the ephaptic mechanism produces
reasonable qualitative agreement with the temporal dynamics exhibited by
flicker enhancement experiments. We find that although GABA produces
enhancement, this mechanism alone is insufficient to reproduce the
experimental results. We view this multiscale continuum approach as a
first step in formulating a multi-layer mathematical model of retinal
circuitry, which would include the other ‘brain nuclei’ within the retina:
the inner plexiform layer where bipolar, amacrine, interplexiform, and
ganglion cells interact.