public 01:34:42

Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers

  -   Uploaded by root ( 88 Views )

Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment‑naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.

public 01:34:59

Andrew Brouwer : Harnessing environmental surveillance: mathematical modeling in the fight against polio

  -   Uploaded by root ( 93 Views )

Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013-14, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. However, we have lacked the theory to translate environmental surveillance into public health metrics; it is a priori unclear how much environmental surveillance can even say about population-level disease dynamics. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used differential algebra and profile likelihood techniques to perform identifiability analysis, that is, to assess how much information exists in the data for the model, and to quantify inference uncertainty. From the environmental surveillance data, we estimated the epidemic curve and transmission dynamics, determining that the outbreak likely happened much faster than previously thought. Our mathematical modeling approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.

public 01:14:46

David Basanta : Computational modeling of bone metastatic prostate cancer

  -   Uploaded by root ( 62 Views )

public 01:29:48

Jake Taylor-King : Generalized Jump Processes and Osteocyte Network Formation

  -   Uploaded by root ( 61 Views )

My talk will have two parts. PART I, From Birds to Bacteria: Generalised Velocity Jump Processes. There are various cases of animal movement where behaviour broadly switches between two modes of operation, corresponding to a long distance movement state and a resting or local movement state. In this talk, I will give a mathematical description of this process, adapted from Friedrich et. al. (2006). The approach allows the specification any running or waiting time distribution along with any angular and speed distributions. The resulting system of partial integro-differential equations are tumultuous and therefore it is necessary to both simplify and derive summary statistics. We derive an expression for the mean squared displacement, which shows good agreement with experimental data from the bacterium Escherichia coli and the gull Larus fuscus. Finally a large time diffusive approximation is considered via a Cattaneo approximation (Hillen, 2004). This leads to the novel result that the effective diffusion constant is dependent on the mean and variance of the running time distribution but only on the mean of the waiting time distribution. We also consider the Levy regime where the variance of the running distribution tends to infinity. This leads to a fractional diffusion equation for superdiffusive Levy walks and can be solved analytically. Our theory opens up new perspectives both for the systematic derivation of such equations, and for experimental data analysis of intermittent motion. I will also briefly discuss recent developments (by other researchers) within the field of velocity jump processes. PART II: Modelling Osteocyte Network Formation: Healthy and Cancerous Environments. Advanced prostate, breast, and lung cancer can metastasize to bone. In pathological bone, the highly regulated bone remodeling signaling pathway is disrupted. Within bone dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone formation. In the presence of a cancerous microenvironment, the morphology of this network changes. Commonly osteocytes appear to be either overdifferentiated (i.e., there are more dendrites) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, preliminary studies measuring the number of osteocytes per unit area using pathology slides show that the number density of osteocytes change from healthy to metastatic prostate and breast cancer xenografted mice. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and number density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We consider variations of our model to test specific physiological hypotheses related to osteoblast differentiation; for example we can predict how changing measurable biological parameters, such as rates of bone secretion, rates of dendrite growth and rates of osteoblast differentiation can allow for qualitatively different network morphologies, and vice versa. We thenuse our model to hypothesize reasons for the limited efficacy of zoledronate therapy on metastatic breast cancer.