Quicklists
public 01:29:52

Badal Joshi : A Markov model for pole formation

  -   Mathematical Biology ( 115 Views )

public 01:29:51

Karin Leiderman : Mathematical Modeling of Thrombosis

  -   Mathematical Biology ( 108 Views )

public 01:29:51

Franziska Michor : Evolutionary dynamics of cancer

  -   Mathematical Biology ( 122 Views )

Cancer emerges due to an evolutionary process in somatic tissue. The fundamental laws of evolution can best be formulated as exact mathematical equations. Therefore, the process of cancer initiation and progression is amenable to mathematical investigation. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a mathematical approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to deduce the temporal sequence of genetic events during tumorigenesis from crosssectional genomic data of tumors at their fully transformed stage. When applied to a dataset of 70 advanced colorectal cancers, our algorithm accurately predicts the sequence of APC, KRAS, and TP53 mutations previously defined by analyzing tumors at different stages of colon cancer formation. We further validate the method with glioblastoma and leukemia sample data and then apply it to complex integrated genomics databases, finding that high-level EGFR amplification appears to be a late event in primary glioblastomas. RESIC represents the first evolutionary mathematical approach to identify the temporal sequence of mutations driving tumorigenesis and may be useful to guide the validation of candidate genes emerging from cancer genome surveys.

public 01:29:57

Jim Keener : Mechanisms of length regulation of flagella in Salmonella

  -   Mathematical Biology ( 104 Views )

Abstract: The construction of flagellar motors in motile bacteria such as Salmonella is a carefully regulated genetic process. Among the structures that are built are the hook and the filament. The length of the hook is tightly controlled while the length of filaments is less so. However, if a filament is broken off it will regrow, while a broken hook will not regrow. The question that will be addressed in this talk is how Salmonella detects and regulates the length of these structures. This is related to the more general question of how physical properties (such as size or length) can be detected by chemical signals and what those mechanisms are. In this talk, I will present mathematical models for the regulation of hook and filament length. The model for hook length regulation is based on the hypothesis that the hook length is determined by the rate of secretion of the length regulatory molecule FliK and a cleavage reaction with the gatekeeper molecule FlhB. A stochastic model for this interaction is built and analyzed, showing excellent agreement with hook length data. The model for filament length regulation is based on the hypothesis that the growth of filaments is diffusion limited and is measured by negative feedback involving the regulatory protein FlgM. Thus, the model includes diffusion on a one-dimensional domain with a moving boundary, coupled with a negative feedback chemical network. The model shows excellent qualitative agreement with data, although there are some interesting unresolved issues related to the quantitative results.

public 01:29:52

Anita Layton : Myogenic Response to Systolic Pressure in the Afferent Arteriole

  -   Mathematical Biology ( 120 Views )

Elevations in systolic blood pressure are believed to be closely linked to the pathogenesis and progression of renal diseases. It has been hypothesized that the afferent arteriole (AA) protects the glomerulus from the damaging effects of hypertension by sensing increases in systolic blood pressure and responding with a compensatory vasoconstriction. To investigate this hypothesis, we developed a mathematical model of the myogenic response of an AA smooth muscle cell, based on an arteriole model by Gonzalez-Fernandez and Ermentrout (Math Biosci 1994). renal hemodynamic regulation. The model incorporates ionic transport, cell membrane potential, contraction of the AA smooth muscle cell, and the mechanics of a thick-walled cylinder. The model represents a myogenic response based on a pressure-induced shift in the voltage dependence of calcium channel openings: with increasing transmural pressure, model vessel diameter decreases; and with decreasing pressure, vessel diameter increases. Further, the model myogenic mechanism includes a rate-sensitive component that yields constriction and dilation kinetics similar to behaviors observed in vitro. A parameter set is identified based on physical dimensions of an AA in a rat kidney. Model results suggest that the interaction of Ca2+ and K+ fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively, gives rise to periodicity in the transport of the two ions. This results in a time-periodic cytoplasmic calcium concentration, myosin light chains phosphorylation, and crossbridges formation with the attending muscle stress. Further, the model predicts myogenic responses that agree with experimental observations, most notably those which demonstrate that the renal AA constricts in response to increases in both steady and systolic blood pressures. The myogenic model captures these essential functions of the renal AA, and it may prove useful as a fundamental component in a multi-scale model of the renal microvasculature suitable for investigations of the pathogenesis of hypertensive renal diseases.