Paula Vasquez : Coupling macro-micro simulations in biological fluids
- Mathematical Biology ( 0 Views )Some of the most remarkable properties and functions served by complex fluids originate from the interplay between external fields and microstructural dynamics. From a computational point of view this generates a set of challenges related to the need of coupling dynamics at different length and times scales, sometimes spanning several orders of magnitude. Micro-macro simulations have gained a lot of recognition within the field because these methods allow capturing full dynamics at the macroscale without losing resolution at the microscale. In this talk, we will review our efforts to couple existing macroscopic solvers for the Navier-Stokes equations with microstructural dynamics described by Langevin-type equations. In particular, we will discuss dumbbells models -under viscometric and capillary thinning flows fields- and parallel computing using GPUs.
Samuel Isaacson : Spatial Jump Process Models for Estimating Antibody-Antigen Interactions
- Mathematical Biology ( 103 Views )Surface Plasmon Resonance (SPR) assays are a standard approach for quantifying kinetic parameters in antibody-antigen binding reactions. Classical SPR approaches ignore the bivalent structure of antibodies, and use simplified ODE models to estimate effective reaction rates for such interactions. In this work we develop a new SPR protocol, coupling a model that explicitly accounts for the bivalent nature of such interactions and the limited spatial distance over which such interactions can occur, to a SPR assay that provides more features in the generated data. Our approach allows the estimation of bivalent binding kinetics and the spatial extent over which antibodies and antigens can interact, while also providing substantially more robust fits to experimental data compared to classical bivalent ODE models. I will present our new modeling and parameter estimation approach, and demonstrate how it is being used to study interactions between antibodies and spike protein. I will also explain how we make the overall parameter estimation problem computationally feasible via the construction of a surrogate approximation to the (computationally-expensive) particle model. The latter enables fitting of model parameters via standard optimization approaches.
Leo Darrigade : Modelling G protein-coupled receptors (GPCRs) compartmentalized signaling
- Mathematical Biology ( 86 Views )G protein-coupled receptors (GPCRs) are membrane receptors that play a pivotal role in the regulation of reproduction and behavior in humans. Upon binding to specific ligands, they trigger a local cAMP production. Activated receptor are then internalized to different endosomal compartments where they can continue signaling before being recycled or destroyed. Recent studies showed that the different pools of cAMP have different effect on the cell.
In the first part of the talk, I will present a piecewise deterministic Markov process (PDMP) of intracellular signaling. The stochastic part of the model accounts for formation, coagulation, fragmentation and recycling of intracellular vesicles which contain the receptor, whereas the deterministic part of the model represents evolution of chemical reactions due to signaling activity of the receptor. We are interested in the existence of and convergence to a stationary measure. I will present different cases for which we were able to obtain results in this direction.
In the second part of the talk, I will present the numerical workflow (SBML, PEtab and PyPESTO) we use to fit ODEs model of GPCR signaling to longitudinal measure of chemical concentrations (BRET data).
Louis Fostier : A model of oocyte population dynamics for fish oogenesis
- Mathematical Biology ( 85 Views )We introduce and analyze a size-structured oocyte population model, with non local nonlinearities on recruitment, growth and mortality rates to take into account interactions between cells. We pay special attention to the form of the recruitment term, and its influence on the asymptotic behavior of the cell population.
This model is well-suited for representing oocyte population dynamics within the fish ovary. The nonlocal nonlinearities enable us to capture the diverse feedback mechanisms acting on the growth of oocytes of varying sizes and on the recruitment of new oocytes.
We firstly investigate the existence and uniqueness of global bounded solutions by transforming the partial differential equation into an equivalent system of integral equations, which can be solved using the Contraction Mapping Principle.
In a second step, we investigate the asymptotic behavior of the model. Under an additional assumption regarding the form of the growth rate, we can, with the use of a classical time-scaling transformation, reduce the study to that of a equation with linear growth speed and nonlinear inflow boundary condition. Using arguments from the theory of abstract semilinear Cauchy problems, we investigate the local stability of stationary solutions of this equation by reducing it to a characteristic equation involving the eigenvalues of the linearized problem around equilibrium states.
When the mortality rate is zero, the study of existence and stability of stationary solutions is simplified. Explicit calculations can be carried out in certain interesting cases.
Sean Lawley : Stochastics in medicine: Delaying menopause and missing drug doses
- Mathematical Biology ( 104 Views )Stochastic modeling and analysis can help answer pressing medical questions. In this talk, I will attempt to justify this claim by describing recent work on two problems in medicine. The first problem concerns ovarian tissue cryopreservation, which is a proven tool to preserve ovarian follicles prior to gonadotoxic treatments. Can this procedure be applied to healthy women to delay or eliminate menopause? How can it be optimized? The second problem concerns medication nonadherence. What should you do if you miss a dose of medication? How can physicians design dosing regimens that are robust to missed/late doses? I will describe (a) how stochastics theory offers insights into these questions and (b) the mathematical questions that emerge from this investigation. The first problem is based on joint work with Joshua Johnson (University of Colorado School of Medicine), John Emerson (Yale University), and Kutluk Oktay (Yale School of Medicine).
Dean Bottino : Evaluating Strategies for Overcoming Rituximab (R) Resistance Using a Quantitative Systems Pharmacology (QSP) model of Antibody-Dependent Cell-mediated Cytotoxicity & Phagocytosis (ADCC & ADCP): An Academic/Industrial Collaboration
- Mathematical Biology ( 76 Views )Despite the impressive performance of rituximab (R) containing regimens like R-CHOP in CD20+ Non-Hodgkin’s Lymphoma (NHL), 30-60% of R-naïve NHL patients are estimated to be resistant, and approximately 60% of those patients will not respond to subsequent single agent R treatment. Given that antibody dependent cell mediated cytotoxicity (ADCC) and phagocytosis (ADCP) are thought to be the major mechanisms of action of Rituximab, increasing the activation levels of natural killer (NK) and macrophage (MP) cells may be one strategy for overcoming R resistance.
During (and after) the Fields Institute Industrial Problem Solving Workshop in August 2019, academic participants and industry mentors developed and calibrated to literature data a quantitative systems pharmacology (QSP) model of ADCC/ADCP to interrogate which mechanisms of R resistance could be overcome by increased NK or MP activation, and how much effector cell activation would be required to overcome a given degree and mechanism of R resistance.
This work was motivated by a real-world pharmaceutical drug development question, and the academic-industry interactions during and after the workshop resulted in sharknado plots as well as a published QSP model (presented at American Association of Cancer Research Annual Meeting, 2021) that was able to address some of the key questions around overcoming R resistance. The published model was then incorporated into an in-house QSP model supporting the development of a Takeda investigational drug which is being developed to restore R sensitivity in an R-resistant patient population.