Quicklists
public 01:29:51

Franziska Michor : Evolutionary dynamics of cancer

  -   Mathematical Biology ( 135 Views )

Cancer emerges due to an evolutionary process in somatic tissue. The fundamental laws of evolution can best be formulated as exact mathematical equations. Therefore, the process of cancer initiation and progression is amenable to mathematical investigation. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a mathematical approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to deduce the temporal sequence of genetic events during tumorigenesis from crosssectional genomic data of tumors at their fully transformed stage. When applied to a dataset of 70 advanced colorectal cancers, our algorithm accurately predicts the sequence of APC, KRAS, and TP53 mutations previously defined by analyzing tumors at different stages of colon cancer formation. We further validate the method with glioblastoma and leukemia sample data and then apply it to complex integrated genomics databases, finding that high-level EGFR amplification appears to be a late event in primary glioblastomas. RESIC represents the first evolutionary mathematical approach to identify the temporal sequence of mutations driving tumorigenesis and may be useful to guide the validation of candidate genes emerging from cancer genome surveys.

public 01:29:52

Anita Layton : Myogenic Response to Systolic Pressure in the Afferent Arteriole

  -   Mathematical Biology ( 133 Views )

Elevations in systolic blood pressure are believed to be closely linked to the pathogenesis and progression of renal diseases. It has been hypothesized that the afferent arteriole (AA) protects the glomerulus from the damaging effects of hypertension by sensing increases in systolic blood pressure and responding with a compensatory vasoconstriction. To investigate this hypothesis, we developed a mathematical model of the myogenic response of an AA smooth muscle cell, based on an arteriole model by Gonzalez-Fernandez and Ermentrout (Math Biosci 1994). renal hemodynamic regulation. The model incorporates ionic transport, cell membrane potential, contraction of the AA smooth muscle cell, and the mechanics of a thick-walled cylinder. The model represents a myogenic response based on a pressure-induced shift in the voltage dependence of calcium channel openings: with increasing transmural pressure, model vessel diameter decreases; and with decreasing pressure, vessel diameter increases. Further, the model myogenic mechanism includes a rate-sensitive component that yields constriction and dilation kinetics similar to behaviors observed in vitro. A parameter set is identified based on physical dimensions of an AA in a rat kidney. Model results suggest that the interaction of Ca2+ and K+ fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively, gives rise to periodicity in the transport of the two ions. This results in a time-periodic cytoplasmic calcium concentration, myosin light chains phosphorylation, and crossbridges formation with the attending muscle stress. Further, the model predicts myogenic responses that agree with experimental observations, most notably those which demonstrate that the renal AA constricts in response to increases in both steady and systolic blood pressures. The myogenic model captures these essential functions of the renal AA, and it may prove useful as a fundamental component in a multi-scale model of the renal microvasculature suitable for investigations of the pathogenesis of hypertensive renal diseases.

public 01:29:50

Mark Alber : Modeling elastic properties of cells and fibrin networks

  -   Mathematical Biology ( 131 Views )

Viscoelastic interactions of Myxococcus xanthus cells in a low-density domain close to the edge of a swarm have been recently studied in [1] using a combination of a cell-based three-dimensional Subcellular Element (SCE) model [1,2] and cell-tracking experiments. The model takes into account the flexible nature of M. xanthus as well as the effects of adhesion between cells arising from the interaction of the capsular polysaccharide covering two cells in contact with each other. New image and dynamic cell curvature analysis algorithms were used to track and measure the change in cell shapes that occur as flexible cells undergo significant bending during collisions resulting in direct calibration of the model parameters. It will be shown in this talk that flexibility of cells and the adhesive cell�cell and cell�substrate interactions of M. xanthus together with cell to aspect-ratio and directional reversals [3], play an important role in smooth cell gliding and more efficient swarming. In the second part of the talk results of the analysis of the three dimensional structures of fibrin networks, with and without cells, reconstructed from two-dimensional z-stacks of confocal microscopy sections using novel image analysis algorithms, will be presented. These images were used to establish microstructure-based models for studying the relationship between the structural features and the mechanical properties of the fibrin networks in blood clots. The change in the fibrin network alignment under applied strain and the elastic modulus values will be shown to agree well with the experimental data [4]. 1. C.W. Harvey, F. Morcos, C.R. Sweet, D. Kaiser, S. Chatterjee, X. Lu, D. Chen and M. Alber [2011], Study of elastic collisions of M. xanthus in swarms, Physical Biology 8, 026016. 2. C.R. Sweet, S. Chatterjee, Z. Xu, K. Bisordi, E.D. Rosen and M. Alber [2011], Modeling Platelet-Blood Flow Interaction Using Subcellular Element Langevin Method, J R Soc Interface, 2011 May 18. [Epub ahead of print], doi: 10.1098/rsif.2011.0180. 3. Y. Wu, Y. Jiang, D. Kaiser and M. Alber [2009], Periodic reversal of direction allows Myxobacteria to swarm, Proc. Natl. Acad. Sci. USA 106 4 1222-1227. 4. E. Kim, O.V. Kim, K.R. Machlus, X. Liu, T. Kupaev, J. Lioi, A.S. Wolberg, D.Z. Chen, E.D. Rosen, Z. Xu and M. Alber [2011], Soft Matter 7, 4983-4992.

public 01:14:49

Leonid Berlyand : PDE/ODE models of motility in active biosystems

  -   Mathematical Biology ( 124 Views )

In the first part of the talk we present a review of our work on PDE models of swimming bacteria. First we introduce a stochastic PDE model for a dilute suspension of self-propelled bacteria and obtain an explicit asymptotic formula for the effective viscosity (E.V.) that explains the mechanisms of the drastic reduction of E.V.. Next, we introduce a model for semi-dilute suspensions with pairwise interactions and excluded volume constraints. We compute E.V. analytically (based on a kinetic theory approach) and numerically. Comparison with the dilute case leads to a phenomenon of stochasticity arising from a deterministic system. We develop a ODE/PDE model that captures the phase transition, an appearance of correlations and large scale structures due to interbacterial interactions. Collaborators: S. Ryan, B. Haines, (PSU students); I. Aronson, A. Sokolov, D. Karpeev (Argonne); In the second part of the talk we discuss a system of two parabolic PDEs arising in modeling of motility of eukaryotic cells on substrates. The two key properties of this system are (i) presence of gradients in the coupling terms (gradient coupling) and (ii) mass (volume) preservation constraints. We derive the equation of the motion of the cell boundary, which is the mean curvature motion perturbed by a novel nonlinear term and prove that the sharp interface property of initial conditions is preserved in time. This novel term leads to surprising features of the motion of the interface such as discontinuities of the interface velocity and hysteresis. This is joint work with V. Rybalko and M. Potomkin.

public 01:29:50

Katarzyna Rejniak : Fluid dynamics in cancer cell biology

  -   Mathematical Biology ( 120 Views )

Eukaryotic cell microenvironment (inner and outer) is composed in large parts from fluids that interact with solid and elastic bodies, whereas it is the cell cytoplasm, cytoskeleton and basal membrane; the interstitial fluid interpenetrating the stroma and tumor cells; or blood flow carrying the immune or circulating tumor cells. I will discuss the use of two fluid-structure interactions methods, the immersed boundary and the regularized Stokeslets, in applications dealing with the tumor development and treatment. First model operates on the cellular scale and will be used to model various cell processes, such as cell growth, division or death, during the cellular self-organization into a normal mammary acinus, a 3D in vitro structure recapitulating the morphology of breast cysts (acini). I will discuss model development, parameterization and tuning with the experimental data, as well as their subsequent use to investigate the link between morphogenesis of epithelial mutants and molecular alterations of tumor cells. Second model acts on the tissue level, and will be used to investigate the relation between tumor tissue structure and efficacy of anticancer drugs in the context of interstitial fluid flow. I will present simulation results showing non-linear relation between tumor tissue structure and effectiveness of drug penetration. I will also discuss how tumor tissue metabolic state(its oxygenation and acidity) becomes modified due to actions of chemotherapeutic drugs leading to the emergence of tumor zones with potentially drug-resistant cells and/or to tumor areas that are not exposed to drugs at all. Both of these phenomena can contribute to the moderateclinical success of many anticancer drugs.

public 01:34:46

Friday is the start of spring break : no talk

  -   Mathematical Biology ( 115 Views )

public 01:14:42

Harsh Jain : A delay differential equation model of cancer chemotherapy, with applications to ovarian carcinoma treatment

  -   Mathematical Biology ( 114 Views )

The use of delay differential equations (DDEs) to study biological phenomena has a long history, when the rate of change of model variables depends their previous history. Today, DDEs occupy a central place in models of infectious disease dynamics, epidemiology, ecology and tumor growth. In this talk, I will present a delayed partial differential equation (PDE) model of tumor growth and treatment. The model accounts for cell cycle arrest and cell death induced by chemotherapy, and explicitly includes intracellular signaling pathways relevant to drug action. The model is simplified to give a 1D hyperbolic PDE, which is further reduced to a nonlinear, non-autonomous DDE by projecting along characteristics. Necessary and sufficient conditions for the global stability of the cancer-free equilibrium are derived and conditions under which the system evolves to periodic solutions are determined. This has clinical implications since it leads to a lower bound for the amount of therapy required to affect a cure. Finally, I will present a clinical application of the model, by applying it to the treatment of ovarian cancers. Two types of drugs are considered Â? platinum-based chemotherapeutic agents that are the current standard of care for most solid tumors, and small molecule cell death inducers that are currently under development. The model is calibrated versus in vitro experimental results, and is then used to predict optimal doses and administration time scheduling for the treatment of a tumor growing in vivo.

public 01:14:51

None : NO TALK

  -   Mathematical Biology ( 114 Views )