Quicklists
public 01:34:42

Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers

  -   Mathematical Biology ( 219 Views )

Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment‑naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.

public 01:14:42

Hans Othmer : A hybrid model of tumor-stromal interactions in breast cancer

  -   Mathematical Biology ( 139 Views )

Ductal carcinoma in situ (DCIS) is an early stage non-invasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. We will discuss a mathematical model that incorporates the cross-talk between stromal and tumor cells, and which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-$\beta$ signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation, and describe a hybrid model for the interaction of cells with the tumor microenvironment. The analysis sheds light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggests how epigenetic changes in transformed cells affect tumor progression.

public 01:29:50

Mark Alber : Modeling elastic properties of cells and fibrin networks

  -   Mathematical Biology ( 131 Views )

Viscoelastic interactions of Myxococcus xanthus cells in a low-density domain close to the edge of a swarm have been recently studied in [1] using a combination of a cell-based three-dimensional Subcellular Element (SCE) model [1,2] and cell-tracking experiments. The model takes into account the flexible nature of M. xanthus as well as the effects of adhesion between cells arising from the interaction of the capsular polysaccharide covering two cells in contact with each other. New image and dynamic cell curvature analysis algorithms were used to track and measure the change in cell shapes that occur as flexible cells undergo significant bending during collisions resulting in direct calibration of the model parameters. It will be shown in this talk that flexibility of cells and the adhesive cell–cell and cell–substrate interactions of M. xanthus together with cell to aspect-ratio and directional reversals [3], play an important role in smooth cell gliding and more efficient swarming. In the second part of the talk results of the analysis of the three dimensional structures of fibrin networks, with and without cells, reconstructed from two-dimensional z-stacks of confocal microscopy sections using novel image analysis algorithms, will be presented. These images were used to establish microstructure-based models for studying the relationship between the structural features and the mechanical properties of the fibrin networks in blood clots. The change in the fibrin network alignment under applied strain and the elastic modulus values will be shown to agree well with the experimental data [4]. 1. C.W. Harvey, F. Morcos, C.R. Sweet, D. Kaiser, S. Chatterjee, X. Lu, D. Chen and M. Alber [2011], Study of elastic collisions of M. xanthus in swarms, Physical Biology 8, 026016. 2. C.R. Sweet, S. Chatterjee, Z. Xu, K. Bisordi, E.D. Rosen and M. Alber [2011], Modeling Platelet-Blood Flow Interaction Using Subcellular Element Langevin Method, J R Soc Interface, 2011 May 18. [Epub ahead of print], doi: 10.1098/rsif.2011.0180. 3. Y. Wu, Y. Jiang, D. Kaiser and M. Alber [2009], Periodic reversal of direction allows Myxobacteria to swarm, Proc. Natl. Acad. Sci. USA 106 4 1222-1227. 4. E. Kim, O.V. Kim, K.R. Machlus, X. Liu, T. Kupaev, J. Lioi, A.S. Wolberg, D.Z. Chen, E.D. Rosen, Z. Xu and M. Alber [2011], Soft Matter 7, 4983-4992.

public 01:14:49

Mark Alber : Multi-scale Modeling of Bacterial Swarming

  -   Mathematical Biology ( 129 Views )

The ability of animals to self-organize into remarkable patterns of movement is seen throughout nature from herds of large mammals, to flocks of birds, schools of fish, and swarms of insects. Remarkably, patterns of collective movement can be seen even in the simplest forms of life such as bacteria. M. xanthus are common soil bacteria that are among the most “social" bacteria in nature. In this talk clustering mechanism of swarming M. xanthus will be described using combination of experimental movies and stochastic model simulations. Continuous limits of discrete stochastic dynamical systems simulating cell aggregation will be described in the form of reaction-diffusion and nonlinear diffusion equations. Surface motility such as swarming is thought to precede biofilm formation during infection. Population of bacteria P. aeruginosa, major infection in hospitals, will be shown to efficiently propagate as high density waves that move symmetrically as rings within swarms towards the extending tendrils. Multi-scale model simulations suggest a mechanism of wave propagation as well as branched tendril formation at the edge of the population that depend upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. This collective mechanism of cell- cell coordination was recently shown to moderate swarming direction of individual bacteria to avoid a toxic environment. In the last part of the talk a three-dimensional multiscale modeling approach will be described for studying fluid–viscoelastic cell interaction during blood clot formation.

public 01:34:46

Gregory Herschlag : Optimal reservoir conditions for material extraction across pumping and porous channels

  -   Mathematical Biology ( 127 Views )

In this talk, I will discuss a new result in fluid flows through channels with permeable membranes with simple pumping dynamics. Fluid will be exchanged and metabolized in a simple reservoir and I will demonstrate the existence of optimal reservoir properties that may either maximize or minimized the amount of fluid being extracted across the channel walls. The biological relevance of this work may be seen by noting that all living organisms of a sufficient size rely on complex systems of tubular networks to efficiently collect, transport and distribute nutrients or waste. These networks exchange material with the interstitium via embedded channels leading to effective permeabilities across the wall separating the channel interior from the interstitium. In many invertebrates, for example, respiratory systems are made of complex tracheal systems that branch out through the entire body allowing for passive exchange of oxygen and carbon dioxide. In many of these systems, certain animals utilize various pumping mechanisms that alter the flow of the air or fluid being transported. Although the net effect of pumping of the averaged rates of fluid flow through the channel is typically well understood, it is still a largely open problem to understand how, and in what circumstances, pumping enables and enhances the exchange of material across channel walls. It has been demonstrated experimentally, for example, that when certain insects flap their wings, compression of the trachea allow for more efficient oxygen extraction, however it is unclear if this pumping is optimized for flight, oxygen uptake or neither, and understanding this problem quantitatively will shed insight on this biological process. Many of these interesting scenarios occur at low Reynolds number and this regime will be the focus of the presentation.

public 01:34:56

Casey Diekman : Data Assimilation and Dynamical Systems Analysis of Circadian Rhythmicity and Entrainment

  -   Mathematical Biology ( 126 Views )

Circadian rhythms are biological oscillations that align our physiology and behavior with the 24-hour environmental cycles conferred by the Earth’s rotation. In this talk, I will discuss two projects that focus on circadian clock cells in the brain and the entrainment of circadian rhythms to the light-dark cycle. Most of what we know about the electrical activity of circadian clock neurons comes from studies of nocturnal (night-active) rodents, hindering the translation of this knowledge to diurnal (day-active) humans. In the first part of the talk, we use data assimilation and patch-clamp recordings from the diurnal rodent Rhabdomys pumilio to build the first mathematical models of the electrophysiology of circadian neurons in a day-active species. We find that the electrical activity of circadian neurons is similar overall between nocturnal and diurnal rodents but that there are some interesting differences in their responses to inhibition. In the second part of the talk, we use tools from dynamical systems theory to study the reentrainment of a model of the human circadian pacemaker following perturbations that simulate jet lag. We show that the reentrainment dynamics are organized by invariant manifolds of fixed points of a 24-hour stroboscopic map and use these manifolds to explain a rapid reentrainment phenomenon that occurs under certain jet lag scenarios.

public 01:14:49

Leonid Berlyand : PDE/ODE models of motility in active biosystems

  -   Mathematical Biology ( 124 Views )

In the first part of the talk we present a review of our work on PDE models of swimming bacteria. First we introduce a stochastic PDE model for a dilute suspension of self-propelled bacteria and obtain an explicit asymptotic formula for the effective viscosity (E.V.) that explains the mechanisms of the drastic reduction of E.V.. Next, we introduce a model for semi-dilute suspensions with pairwise interactions and excluded volume constraints. We compute E.V. analytically (based on a kinetic theory approach) and numerically. Comparison with the dilute case leads to a phenomenon of stochasticity arising from a deterministic system. We develop a ODE/PDE model that captures the phase transition, an appearance of correlations and large scale structures due to interbacterial interactions. Collaborators: S. Ryan, B. Haines, (PSU students); I. Aronson, A. Sokolov, D. Karpeev (Argonne); In the second part of the talk we discuss a system of two parabolic PDEs arising in modeling of motility of eukaryotic cells on substrates. The two key properties of this system are (i) presence of gradients in the coupling terms (gradient coupling) and (ii) mass (volume) preservation constraints. We derive the equation of the motion of the cell boundary, which is the mean curvature motion perturbed by a novel nonlinear term and prove that the sharp interface property of initial conditions is preserved in time. This novel term leads to surprising features of the motion of the interface such as discontinuities of the interface velocity and hysteresis. This is joint work with V. Rybalko and M. Potomkin.

public 01:29:51

Karin Leiderman : Mathematical Modeling of Thrombosis

  -   Mathematical Biology ( 121 Views )

public 01:29:50

Katarzyna Rejniak : Fluid dynamics in cancer cell biology

  -   Mathematical Biology ( 120 Views )

Eukaryotic cell microenvironment (inner and outer) is composed in large parts from fluids that interact with solid and elastic bodies, whereas it is the cell cytoplasm, cytoskeleton and basal membrane; the interstitial fluid interpenetrating the stroma and tumor cells; or blood flow carrying the immune or circulating tumor cells. I will discuss the use of two fluid-structure interactions methods, the immersed boundary and the regularized Stokeslets, in applications dealing with the tumor development and treatment. First model operates on the cellular scale and will be used to model various cell processes, such as cell growth, division or death, during the cellular self-organization into a normal mammary acinus, a 3D in vitro structure recapitulating the morphology of breast cysts (acini). I will discuss model development, parameterization and tuning with the experimental data, as well as their subsequent use to investigate the link between morphogenesis of epithelial mutants and molecular alterations of tumor cells. Second model acts on the tissue level, and will be used to investigate the relation between tumor tissue structure and efficacy of anticancer drugs in the context of interstitial fluid flow. I will present simulation results showing non-linear relation between tumor tissue structure and effectiveness of drug penetration. I will also discuss how tumor tissue metabolic state(its oxygenation and acidity) becomes modified due to actions of chemotherapeutic drugs leading to the emergence of tumor zones with potentially drug-resistant cells and/or to tumor areas that are not exposed to drugs at all. Both of these phenomena can contribute to the moderateclinical success of many anticancer drugs.

public 01:34:46

Friday is the start of spring break : no talk

  -   Mathematical Biology ( 115 Views )

public 01:29:53

Linda Cummings : Fluid dynamics and encrustation problems in stented and catheterized urinary tracts

  -   Mathematical Biology ( 110 Views )

A ureteric stent is a slender polymer tube that can be placed within the ureter (the muscular tube that conveys urine from the kidney to the bladder) to relieve a blockage due, for example, to a kidney stone in transit, or to external pressure from a tumor. A urinary catheter can be placed similarly within the urethra (the muscular tube conveying urine from the bladder out of the body), either again to relieve a blockage, or to allow control of urination in incontinent patients or those recovering from surgery. Several clinical complications are associated with each of these biomedical devices. Both become encrusted, over time, with salts that precipitate out from the urine. Such encrustation is often associated with infection and the presence of bacterial biofilm on the device and, if severe, can make removal of the device difficult and painful. Ureteric stents are also associated with urinary reflux: retrograde flow of urine back towards the kidney. This arises because the stent prevents proper function of the sphincter between ureter and bladder that normally closes off when bladder pressure rises. Such reflux can expose the kidney to dangerously high pressures, and increase the risk of renal infection, both of which can lead to long-term damage. This talk will highlight aspects of our interdisciplinary work on such problems. We present mathematical models of the reflux and encrustation processes and consider the implications for device design and clinical practice.

public 01:14:48

Lydia Bilinsky : A Mathematical Model of Glutamate and Glutamine Metabolism in the Rat: Implications for Glutathione Production

  -   Mathematical Biology ( 107 Views )

Glutathione (GSH), a tripeptide formed from glutamate, cysteine, and
glycine, is arguably the most important antioxidant in the body. NAPQI, a
byproduct of acetaminophen (APAP) metabolism which is toxic to liver
cells, is neutralized by GSH. Although produced in great quantity by the
liver, in cases of APAP overdose demand for GSH can outstrip supply,
causing liver failure. Currently, patients presenting to the ER with APAP
overdose are given an infusion of cysteine since it is believed to be the
rate-limiting amino acid in GSH synthesis, however, there is evidence that
under some circumstances glutamate can become rate-limiting. Complicating
the issue is that in most hepatocytes, glutamate is not absorbable from
blood plasma but is formed from glutamine, which is produced in large
amounts by the skeletal muscle. In order to develop better rescue
protocols for APAP overdose, we have developed a mathematical model of
glutamate and glutamine metabolism in the rat. We have also investigated
how model parameters should change in the case of increased cortisol
production, such as occurs during sepsis, trauma, burns, and other
pathological states; the cortisol-stressed state has been studied in rats
by giving them dexamethasone. We compare model predictions with
experimental data for the normal, healthy rat and dexamethasone-stressed
rat. Biological parameters are taken from the literature wherever possible.

public 01:14:42

Sandy Anderson : Hijacking Homeostatsis: How Heterogeneity Drives Tumor Progression and Treatment Failure

  -   Mathematical Biology ( 107 Views )

Heterogeneity in cancer is an observed fact, both genotypically and phenotypically. Cell-cell variation is seen in almost all aspects of cancer from early development all the way through to invasion and subsequent metastasis. Our current understanding of this heterogeneity has mainly focused at the genetic scale with little information on how this variation translates to actual changes in cell phenotypic behavior. Given that many genotypes can lead to the same cellular phenotype, it is important that we quantify the range and scope of this heterogeneity at the phenotypic scale as ultimately this variability will dictate the aggressiveness of the tumor and its treatability. Central to our understanding of this heterogeneity is how the tumor cells interact with each other and with their microenvironment. Since it is these very interactions that drive selection and that ultimately define the ecology of the tissue in which the tumor is developing. Considering an organ as an ecological system, means that we should view normal tissue homeostasis as an equilibrium that cancer cells must disrupt if they are to be successful. Disruption of this equilibrium is often one of the first events in cancer development, as the normal control mechanisms of the tissue are damaged or ignored. We will discuss the interplay between homeostasis, heterogeneity, evolution and ecology in cancer progression and treatment failure with an emphasis on the metabolism of breast cancer.

public 01:29:50

Robert Guy : Models of Cytoplasmic Streaming in Motile Amoeboid Cells

  -   Mathematical Biology ( 104 Views )

Inside every eukaryotic cell is the nucleus, organelles, and the surrounding cytoplasm, which typically accounts for 50% of the cell volume. The cytoplasm is a complex mixture of water, protein, and a dynamic polymer network. Cells use cytoplasmic streaming to transmit chemical signals, to distribute nutrients, and to generate forces involved in locomotion. In this talk we present two different models related to cytoplasmic streaming in amoeboid cells. In the first part of the talk, we present a computational model to describe the dynamics of blebbing, which occurs when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol towards the area of detachment and the local expansion of the cell membrane. The model is used to explore the relative roles in bleb dynamics of cytoplasmic viscosity, permeability of the cytoskeleton, and elasticity of the membrane and cytoskeleton. In the second part of the talk we examine how flow-induced instabilities of cytoplasm are related to the structural organization of the giant amoeboid cell Physarum polycephalum. We use a multiphase flow model that treats both the cytosol and cytoskeleton as fluids each with its own material properties and internal forces, and we discuss instabilities of the sol/gel mixture that produce flow channels within the gel. We analyze a reduced model and offer a new and general explanation for how fluid flow is involved in cytoskeletal reorganization.