Quicklists
public 01:34:42

Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers

  -   Mathematical Biology ( 219 Views )

Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatmentâ??naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.

public 01:14:48

Steven Baer : Multiscale Modeling of Neural Subcircuits and Feedback Mechanisms in the Outer Plexiform Layer of the Retina

  -   Mathematical Biology ( 143 Views )

Visual processing begins in the outer plexiform layer of the retina, where
bipolar, horizontal, and photoreceptor cells interact. In vertebrates, the
onset of dim backgrounds can enhance small spot flicker responses of
retinal horizontal cells. This flicker response is called background-
induced flicker enhancement. The underlying mechanism for the feedback
is unclear but competing hypotheses have been proposed. One is the GABA
hypothesis, which states that the inhibitory neurotransmitter GABA,
released from horizontal cells, mediates the feedback by blocking calcium
channels. Another is the ephaptic hypothesis, which contends that calcium
entry is regulated by changes in the electrical potential within the
intersynaptic space between cones and horizontal cells. In this study, a
continuum spine model of cone-horizontal cell synaptic circuitry is
formulated. The model captures two spatial scales - the scale of an
individual synapse and the scale of the receptive field involving hundreds
to thousands of synapses. We show that the ephaptic mechanism produces
reasonable qualitative agreement with the temporal dynamics exhibited by
flicker enhancement experiments. We find that although GABA produces
enhancement, this mechanism alone is insufficient to reproduce the
experimental results. We view this multiscale continuum approach as a
first step in formulating a multi-layer mathematical model of retinal
circuitry, which would include the other Â?brain nucleiÂ? within the retina:
the inner plexiform layer where bipolar, amacrine, interplexiform, and
ganglion cells interact.

public 01:29:48

Jake Taylor-King : Generalized Jump Processes and Osteocyte Network Formation

  -   Mathematical Biology ( 141 Views )

My talk will have two parts. PART I, From Birds to Bacteria: Generalised Velocity Jump Processes. There are various cases of animal movement where behaviour broadly switches between two modes of operation, corresponding to a long distance movement state and a resting or local movement state. In this talk, I will give a mathematical description of this process, adapted from Friedrich et. al. (2006). The approach allows the specification any running or waiting time distribution along with any angular and speed distributions. The resulting system of partial integro-differential equations are tumultuous and therefore it is necessary to both simplify and derive summary statistics. We derive an expression for the mean squared displacement, which shows good agreement with experimental data from the bacterium Escherichia coli and the gull Larus fuscus. Finally a large time diffusive approximation is considered via a Cattaneo approximation (Hillen, 2004). This leads to the novel result that the effective diffusion constant is dependent on the mean and variance of the running time distribution but only on the mean of the waiting time distribution. We also consider the Levy regime where the variance of the running distribution tends to infinity. This leads to a fractional diffusion equation for superdiffusive Levy walks and can be solved analytically. Our theory opens up new perspectives both for the systematic derivation of such equations, and for experimental data analysis of intermittent motion. I will also briefly discuss recent developments (by other researchers) within the field of velocity jump processes. PART II: Modelling Osteocyte Network Formation: Healthy and Cancerous Environments. Advanced prostate, breast, and lung cancer can metastasize to bone. In pathological bone, the highly regulated bone remodeling signaling pathway is disrupted. Within bone dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone formation. In the presence of a cancerous microenvironment, the morphology of this network changes. Commonly osteocytes appear to be either overdifferentiated (i.e., there are more dendrites) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, preliminary studies measuring the number of osteocytes per unit area using pathology slides show that the number density of osteocytes change from healthy to metastatic prostate and breast cancer xenografted mice. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and number density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We consider variations of our model to test specific physiological hypotheses related to osteoblast differentiation; for example we can predict how changing measurable biological parameters, such as rates of bone secretion, rates of dendrite growth and rates of osteoblast differentiation can allow for qualitatively different network morphologies, and vice versa. We thenuse our model to hypothesize reasons for the limited efficacy of zoledronate therapy on metastatic breast cancer.