Christine Heitsch : The Combinatorics of RNA Branching
- Mathematical Biology ( 304 Views )Understanding the folding of RNA sequences into three-dimensional structures is one of the fundamental challenges in molecular biology. For example, the branching of an RNA secondary structure is an important molecular characteristic yet difficult to predict correctly, especially for sequences on the scale of viral genomes. However, results from enumerative, probabilistic, analytic, and geometric combinatorics yield insights into RNA structure formation, and suggest new directions in viral capsid assembly.
John Gemmer : Nature’s Forms are Frilly, Flexible and Functional
- Mathematical Biology ( 259 Views )Many patterns in Nature and industry arise from the system minimizing an appropriate energy. Torn plastic sheets and growing leaves provide striking examples of pattern forming systems which can transition from single wavelength geometries (leaves) to complex fractal-like shapes (lettuce). These fractal-like patterns seem to have many length scales, i.e. the same amount of extra detail can be seen when looking closer (“statistical self-similarity”). It is a mystery how such complex patterns could arise from energy minimization alone. In this talk I will address this puzzle by showing that such patterns naturally arise from the sheet adopting a hyperbolic non-Euclidean geometry. However, there are many different hyperbolic geometries that the growing leaf could select. I will show using techniques from analysis, differential geometry and numerical optimization that the fractal like patterns are indeed the natural minimizers for the system. I will also discuss the implications of our work to developing shape changing soft matter which can be implemented in soft machines.
Rachel Howard : Monitoring the systemic immune response to cancer therapy
- Mathematical Biology ( 246 Views )Complex interactions occur between tumor and host immune system during cancer development and treatment, and a weak systemic immune response can be prognostic of poor patient outcomes. We strive to not only better understand the dynamic behavior of circulating immune cell populations before and during cancer therapy, but also to monitor these dynamic changes to facilitate real-time prediction of patient outcomes and potentially therapy adaptation. I will provide examples of both theoretical (mathematical) and data-driven (epidemiological) approaches to incorporating established systemic immune markers into clinical decision-making. First, coupling models of local tumor-immune dynamics and systemic T cell trafficking allows us to simulate the evolution of tumor and immune cell populations in anatomically distant sites following local therapy, in turn identifying the optimal treatment target for maximum reduction of global tumor burden. Second, improved understanding of how circulating immune markers vary both within and between individual patients can allow more accurate risk stratification at diagnosis, and personalized prediction of patient response to therapy. The importance of multi-disciplinary collaborations in making predictive and prognostic models clinically relevant will be discussed.
Daniel Lew : Modeling the effect of vesicle traffic on polarity establishment in yeast
- Mathematical Biology ( 231 Views )There are two generally accepted models for the cell biological positive feedback loops that allow yeast cells to break symmetry and establish an axis of polarity. Both have been subjects of published mathematical analyses. Here I will argue that the models used to support a vesicle trafficking model incorporated a simplifying assumption that seemed innocuous but in fact was critical to their success. The assumption is not physically plausible, and its removal means that the model fails. I will show how changing other assumptions can make the model work, but there is no experimental support for those changes. And without them, the vesicle trafficking model perturbs polarity, rather than establishing polarity
Suncica Canic : Fluid-composite structure interaction and blood flow
- Mathematical Biology ( 210 Views )Fluid-structure interaction problems with composite structures arise in many applications. One example is the interaction between blood flow and arterial walls. Arterial walls are composed of several layers, each with different mechanical characteristics and thickness. No mathematical results exist so far that analyze existence of solutions to nonlinear, fluid-structure interaction problems in which the structure is composed of several layers. In this talk we will summarize the main difficulties in studying this class of problems, and present a computational scheme based on which a proof of the existence of a weak solution was obtained. Our results reveal a new physical regularizing mechanism in FSI problems: inertia of the thin fluid-structure interface with mass regularizes evolution of FSI solutions. Implications of our theoretical results on modeling the human cardiovascular system will be discussed. This is a joint work with Boris Muha (University of Zagreb, Croatia), Martina Bukac (U of Notre Dame, US) and Roland Glowinski (UH). Numerical results with vascular stents were obtained with S. Deparis and D. Forti (EPFL, Switzerland), and with A. Quaini (UH). Collaboration with medical doctors Dr. S. Little (Methodist Hospital Houston) and Dr. Z. Krajcer (Texas Heart Institute) is also acknowledged.
Arthur Sherman : Diabetes Pathogenesis as a Threshold-Crossing Process
- Mathematical Biology ( 205 Views )It has long been accepted that type 1 diabetes results from a lack of insulin, as the insulin-secreting pancreatic beta cells are destroyed by an autoimmune process. In contrast, the cause of type 2 diabetes (T2D) is less clear. Most people with pre-diabetes or in the early stages of T2D have abnormally high plasma insulin concentrations, and insulin rises before glucose does. We show that these difficulties are resolved by a mathematical model in which the onset of T2D is represented by the crossing of a threshold. The threshold is atypical in some respects and requires consideration of the slow manifolds to avoid incorrect conclusions.
Jeremy Gunawardena : The Hopfield Barrier in eukaryotic gene regulation
- Mathematical Biology ( 201 Views )John Hopfield pointed out, in his seminal paper on kinetic proofreading, that if a biochemical system operates at thermodynamic equilibrium there is a barrier to how well it can achieve high-fidelity in transcription and translation. Hopfield showed that the only way to bypass this barrier is to dissipate energy and maintain the system away from equilibrium. Eukaryotic gene regulation uses dissipative mechanisms, such as nucleosome remodelling, DNA methylation and post-translational modification of histones, which are known to play a critical regulatory role but have been largely ignored in quantitative treatments. I will describe joint work with my colleague Angela DePace in which we use the recently-developed, graph-theoretic linear framework to show that the sharpness with which a gene is turned on or off in response to an upstream transcription factor is limited if the regulatory system operates at equilibrium, even with arbitrary degrees of higher-order cooperativity. In contrast, if the regulatory system is maintained away from equilibrium, substantially higher degrees of sharpness can be achieved. We suggest that achieving sharpness in gene regulation exhibits a Hopfield Barrier, and uncover, along the way, a new interpretation for the ubiquitously used, but poorly justified, Hill function.
Joshua Vogelstein : Consistent Graph Classification applied to Human Brain Connectome Data
- Mathematical Biology ( 193 Views )Graphs are becoming a favorite mathematical object for representation of data. Yet, statistical pattern recognition has focused almost entirely on vector valued data in Euclidean space. Graphs, however, live in graph space, which is non-Euclidean. Thus, most inference techniques are not even defined for graph valued data. Previous work in the classification of graph-valued data typically follows one of two recipes. (1) Vectorize the adjacency matrices of the graphs, and apply standard machine learning techniques. (2) Compute some number of graph invariants (e.g., clustering coefficient, or degree distribution) for each graph, and then apply standard machine learning techniques. We follow a different recipe based in the probabilistic theory of pattern recognition. First, we define a joint graph-class model. Given this model, we derive classifiers which we prove are consistent; that is, they converge to the Bayes optimal classifier. Specifically, we build two consistent classifiers for graph valued data, a parametric and a non-parametric version. In a sense, these classifiers span the spectrum of complexity, the former is consistent for graphs sampled from relatively simple random graph distributions, the latter is consistent for graphs sampled from (nearly) any random graph distribution. Although both classifiers assume that all our graphs have labeled vertices, we generalize these results to also incorporate unlabeled graphs, as well as weighted and multigraphs. We apply these graph classifiers to human brain data. Specifically, using diffusion MRI, we can obtain large brain-graphs (10,000 vertices) for each subject, where vertices correspond to voxels. We then coarsen the graphs spatially to obtain smaller (70 vertex) graphs per subject. Using <50 subjects, we are able to achieve nearly 85% classification accuracy, with results interpretable to neurobiologists with regard to the brain regions of interest.
Cristan Tomasetti : Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention
- Mathematical Biology ( 193 Views )Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations.
David Basanta : The ecology of cancer: mathematical modelling and clinical implications
- Mathematical Biology ( 179 Views )Decades of research in cancer have yielded scant results other than highlighting the need for new approaches that could go beyond the tried and tested molecular-based ones. Recent clinical studies show that tumour heterogeneity and selection, the ingredients of Darwinian evolution, can explain cancer progression towards malignancy as well as recurrence after treatment. In this talk I will describe mathematical and computational models that explore cancer evolutionary dynamics and that can explain how the interactions between the tumour with its environment (the tumour ecosystem) can yield a better understanding of cancer biology and lead to better and more efficacious treatments for cancer patients.
Stephan Huckemann : Statistical challenges in shape prediction of biomolecules
- Mathematical Biology ( 176 Views )The three-dimensional higher-order structure of biomolecules
determines their functionality. While assessing primary structure is
fairly easily accessible, reconstruction of higher order structure is
costly. It often requires elaborate correction of atomic clashes,
frequently not fully successful. Using RNA data, we describe a purely
statistical method, learning error correction, drawing power from a
two-scale approach. Our microscopic scale describes single suites by
dihedral angles of individual atom bonds; here, addressing the
challenge of torus principal component analysis (PCA) leads to a
fundamentally new approach to PCA building on principal nested spheres
by Jung et al. (2012). Based on an observed relationship with a
mesoscopic scale, landmarks describing several suites, we use Fréchet
means for angular shape and size-and-shape, correcting
within-suite-backbone-to-backbone clashes. We validate this method by
comparison to reconstructions obtained from simulations approximating
biophysical chemistry and illustrate its power by the RNA example of
SARS-CoV-2.
This is joint work with Benjamin Eltzner, Kanti V. Mardia and Henrik
Wiechers.
Literature:
Eltzner, B., Huckemann, S. F., Mardia, K. V. (2018):
Torus principal component analysis with applications to RNA
structure. Ann. Appl. Statist. 12(2), 1332?1359.
Jung, S., Dryden, I. L., Marron, J. S. (2012):
Analysis of principal nested spheres. Biometrika, 99 (3), 551-568
Mardia, K. V., Wiechers, H., Eltzner, B., Huckemann, S. F. (2022).
Principal component analysis and clustering on manifolds. Journal of
Multivariate Analysis, 188, 104862,
https://www.sciencedirect.com/science/article/pii/S0047259X21001408
Wiechers, H., Eltzner, B., Mardia, K. V., Huckemann, S. F. (2021).
Learning torus PCA based classification for multiscale RNA backbone
structure correction with application to SARS-CoV-2. To appear in the
Journal of the Royal Statistical Society, Series C,
bioRxiv https://doi.org/10.1101/2021.08.06.455406
Seth Sullivant : Statistically-Consistent k-mer Methods for Phylogenetic Tree Reconstruction
- Mathematical Biology ( 166 Views )Frequencies of k-mers in sequences are sometimes used as a basis for inferring phylogenetic trees without first obtaining a multiple sequence alignment. We show that a standard approach of using the squared-Euclidean distance between k-mer vectors to approximate a tree metric can be statistically inconsistent. To remedy this, we derive model-based distance corrections for orthologous sequences without gaps, which lead to consistent tree inference. The identifiability of model parameters from k-mer frequencies is also studied. Finally, we report simulations showing the corrected distance out-performs many other k-mer methods, even when sequences are generated with an insertion and deletion process. These results have implications for multiple sequence alignment as well, since k-mer methods are usually the first step in constructing a guide tree for such algorithms. This is joint work with Elizabeth Allman and John Rhodes.
Darryl Shibata : Reconstructing Human Tumor Ancestries from their Genomes: Making Human Tissues Talk
- Mathematical Biology ( 163 Views )It is well-known that genomes encode ancestry through replication errors - on average the greater the numbers of differences between two genomes, the greater the time since they shared a common ancestor ("molecular clock hypothesis"). This approach is commonly used to infer ancestries of species and populations, and these same tools can be applied to somatic cell evolution, in particular to better infer ancestries of normal and neoplastic tissues. For example, by sampling from opposite sides of the same human colorectal tumor, one can coalesce back to the earliest tumor cells. Such studies reveal that many human colorectal tumors are simple single "Big Bang" expansions, with evidence of neutral evolution during growth. It may be possible to understand in detail what is impossible to directly observe - the first few divisions of human tumors.
John Bush : Biocapillarity
- Mathematical Biology ( 157 Views )We report the results of our integrated experimental and theoretical investigations of biological systems dominated by interfacial effects. Particular attention is given to elucidating natural strategies for water-repellency, walking on water, underwater breathing, and drinking.
Nick Moore : How focused flexibility maximizes the thrust production of flapping wings
- Mathematical Biology ( 154 Views )Birds, insects, and fish all exploit the fact that flexible wings or fins generally perform better than their rigid counterparts. Given the task of designing an optimal wing, though, it is not clear how to best distribute the flexibility: Should the wing be uniformly flexible along its length, or could some advantage be gained by making certain sections more rigid than others? I will discuss this question by using a 2D small-amplitude model for the fluid-structure interaction combined with an efficient Chebyshev PDE solver. Numerical optimization shows that concentrating flexibility near the leading edge of the wing maximizes thrust production, an arrangement that resembles the torsional-joint flexibility mechanism found in insect wings. I will discuss the possibility of extending into three dimensions to address the question of optimal wing architecture more generally.
Adriana Dawes : Protein localization at the single cell level: Interplay between biochemistry, mechanics and geometry
- Mathematical Biology ( 153 Views )Cells are highly organized and complex structures, with the capacity to segregate specific factors to spatially disjoint regions in a process called polarization. Polarization, which specifies a spatial axis in the cell, is a highly conserved biological process and is required for proper embryonic development, wound healing, and many other normal and pathological biological functions. Despite the importance of polarization, we do not fully understand how this protein segregation is initiated and maintained. In this talk, I will show how we can use numerical and analytical approaches to investigate how symmetry breaking begins the process of polarization, and how the geometry of the cell may play a role in the establishment and maintenance of spatial patterns associated with polarization.
Jacob Scott : Understanding the evolution of resistance: a comprehensive and integrated mathematical and experimental research program.
- Mathematical Biology ( 150 Views )The evolution of resistance remains an elusive problem in the treatment of both cancer and infectious disease, and represents one of the most important medical problems of our time. While the illnesses are different on several non-trivial levels including timescale and complexity, the underlying biological phenomenon is the same: Darwinian evolution. To comprehensively approach these problems, I have focussed my attention on building a broad suite of investigations centered around the causes and consequences of the evolutionary process in these contexts. I will discuss my and my collaborator's efforts to; model the evolutionary process on the genomic scale in both an analytic (Markov process) and stochastic (individual based model and inference) format; to quantify in vitro competition and interaction between cancer cell lines through an evolutionary game theoretic lens using time-lapse microscopy and computer vision; and to understand the evolutionary contingencies inherent in collateral sensitivity in E. coli and ALK mutated non-small cell lung cancer.
Jim Nolen : Sticky limit theorems for statistics in singular spaces.
- Mathematical Biology ( 147 Views )This talk is about extending classical limit theorems of probability (law of large numbers, central limit theorem) to a non-Euclidean setting. I'll talk about new and interesting phenomena observed when sampling independent points from certain singular geometric spaces. The main result is a limit theorem -- the "sticky central limit theorem" -- which applies to the mean or barycenter of a family of independent samples as the number of samples grows. The theorem shows that the geometry of the underlying space may have an interesting effect on the asymptotic fluctuations of the sample means, in a way that does not occur with independent samples in Euclidean space. One motivation for thinking about statistics in singular geometric spaces comes from evolutionary biology; one can consider phylogenetic trees as points in a metric space of the sort discussed in this talk. Apart from this basic motivation, however, the talk will have little biological content and will be mainly about probability.
Rick Durrett : Branching Process Models of Cancer
- Mathematical Biology ( 145 Views )It is common to use a multitype branching process to model the accumulation of mutations that leads to cancer progression, metastasis, and resistance to treatment. In this talk I will describe results about the time until the first type k (cell with k mutations) and the growth of the type k population obtained in joint work with Stephen Moseley, and their use in evaluating possible screening strategies for ovarian cancer, work in progress with Duke undergraduate Kaveh Danesh. The point process representation of the limit, which is a one-sided stable law, together with results from 10-60 years ago leads to remarkable explicit formulas for Simpson's index and the size of the largest clone. These results are important in understanding tumor diversity which can present serious obstacles to treatment. The last topic is joint work with Jasmine Foo, Kevin Leder, John Mayberry, and Franziska Michor
Steven Baer : Multiscale Modeling of Neural Subcircuits and Feedback Mechanisms in the Outer Plexiform Layer of the Retina
- Mathematical Biology ( 143 Views )Visual processing begins in the outer plexiform layer of the retina, where
bipolar, horizontal, and photoreceptor cells interact. In vertebrates, the
onset of dim backgrounds can enhance small spot flicker responses of
retinal horizontal cells. This flicker response is called background-
induced flicker enhancement. The underlying mechanism for the feedback
is unclear but competing hypotheses have been proposed. One is the GABA
hypothesis, which states that the inhibitory neurotransmitter GABA,
released from horizontal cells, mediates the feedback by blocking calcium
channels. Another is the ephaptic hypothesis, which contends that calcium
entry is regulated by changes in the electrical potential within the
intersynaptic space between cones and horizontal cells. In this study, a
continuum spine model of cone-horizontal cell synaptic circuitry is
formulated. The model captures two spatial scales - the scale of an
individual synapse and the scale of the receptive field involving hundreds
to thousands of synapses. We show that the ephaptic mechanism produces
reasonable qualitative agreement with the temporal dynamics exhibited by
flicker enhancement experiments. We find that although GABA produces
enhancement, this mechanism alone is insufficient to reproduce the
experimental results. We view this multiscale continuum approach as a
first step in formulating a multi-layer mathematical model of retinal
circuitry, which would include the other brain nuclei within the retina:
the inner plexiform layer where bipolar, amacrine, interplexiform, and
ganglion cells interact.
Rodica Curtu : Mixed-Mode Activity Patterns in Neuronal Networks with Lateral Inhibition
- Mathematical Biology ( 141 Views )Stimulus tuning in a reduced model for neural competition leads to
Hans Othmer : A hybrid model of tumor-stromal interactions in breast cancer
- Mathematical Biology ( 139 Views )Ductal carcinoma in situ (DCIS) is an early stage non-invasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. We will discuss a mathematical model that incorporates the cross-talk between stromal and tumor cells, and which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-$\beta$ signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation, and describe a hybrid model for the interaction of cells with the tumor microenvironment. The analysis sheds light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggests how epigenetic changes in transformed cells affect tumor progression.
L. Ridgway Scott : Digital biology: protein-ligand interactions
- Mathematical Biology ( 137 Views )The digital nature of biology is crucial to its functioning as an information system, as well in building hierarchical components in a repeatable way. We explain how protein systems can function as discrete components, despite the importance of non-specific forces due to the hydrophobic effect. That is, we address the question of why proteins bind to ligands predictably and not in a continuous distribution of places, the way grease forms into blobs. We will give a detailed description of how data mining in the PDB can reveal how proteins interact. We highlight the role of the hydrophobic effect, but we see that it works inversely to the usual concept of hydrophobic interaction. Our work suggests the need for a more accurate model of the dielectric effect in the vicinity of a protein surface, and we discuss some advances in this direction. Our research also provides an understanding of how molecular recognition and signaling can evolve. We give an example of the use of our ideas in drug design.
Franziska Michor : Evolutionary dynamics of cancer
- Mathematical Biology ( 135 Views )Cancer emerges due to an evolutionary process in somatic tissue. The fundamental laws of evolution can best be formulated as exact mathematical equations. Therefore, the process of cancer initiation and progression is amenable to mathematical investigation. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a mathematical approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to deduce the temporal sequence of genetic events during tumorigenesis from crosssectional genomic data of tumors at their fully transformed stage. When applied to a dataset of 70 advanced colorectal cancers, our algorithm accurately predicts the sequence of APC, KRAS, and TP53 mutations previously defined by analyzing tumors at different stages of colon cancer formation. We further validate the method with glioblastoma and leukemia sample data and then apply it to complex integrated genomics databases, finding that high-level EGFR amplification appears to be a late event in primary glioblastomas. RESIC represents the first evolutionary mathematical approach to identify the temporal sequence of mutations driving tumorigenesis and may be useful to guide the validation of candidate genes emerging from cancer genome surveys.
Jean Clairambault : Drug resistance in cancer: biological and medical issues, and continuous models of structured population dynamics
- Mathematical Biology ( 134 Views )Considering cancer as an evolutionary disease, we aim at understanding the means by which cancer cell populations develop resistance mechanisms to drug therapies, in order to circumvent them by using optimised therapeutic combinations. Rather than focusing on molecular mechanisms such as overexpression of intracellular drug processing enzymes or ABC transporters that are responsible for resistance at the individual cell level, we propose to introduce abstract phenotypes of resistance structuring cancer cell populations. The models we propose rely on continuous adaptive dynamics of cell populations, and are amenable to predict asymptotic evolution of these populations with respect to the phenotypic traits of interest. Drug-induced drug resistance, the question we are tackling from a theoretical and experimental point of view, may be due to biological mechanisms of different natures, mere local regulation, epigenetic modifications (reversible, nevertheless inheritable) or genetic mutations (irreversible), according to the extent to which the genome of the cells in the population is affected. In this respect, the models we develop are more likely to be biologically corresponding to epigenetic modifications, although eventual induction of emergent resistant cell clones due to mutations under drug pressure is not to be completely excluded. From the biologist's point of view, we study phenotypically heterogeneous, but genetically homogeneous, cancer cell populations under stress by drugs. According to the cell populations at stake and to the exerted drug pressure, is drug resistance in cancer a permanently acquired phenotypic trait or is it reversible? Can it be avoided or overcome by rationally (model-guided) designed combinations of drugs? These are some of the questions we will try to answer in a collaboration between a team of mathematicians and another one of biologists, both dealing with cancer and Darwinian - possibly also Lamarckian - evolution of cell populations.
Jill Galagher : Targeting the phenotype: Treatment strategies for heterogeneous cancer
- Mathematical Biology ( 133 Views )Targeted cancer drugs attack pathway specific phenotypes and can lead to very positive outcomes when a particular phenotype dominates the population of a specific tumor. However, these drugs often fail because not all cells express the targeted phenotype to the same degree. This leads to a heterogeneous response to treatment, and ultimate recurrence of the cancer as sensitive cells die off and resistant cells take over. We explore how treatment strategies informed by a tumors phenotypic mix, can help slow the emergence of resistance and stave off tumor recurrence. We use an off-lattice agent-based model that incorporates inheritance of two phenotypes proliferation rate and migration speed and is modulated by a space limiting selection force. We find how and when distinct distributions of phenotypes require different treatment strategies.
Erica Graham : On the Road to Insulin Resistance: Modeling Oxidative Stress-Mediated Dysfunction in Skeletal Muscle
- Mathematical Biology ( 132 Views )Insulin resistance, a major factor in type 2 diabetes development, is a systemic defect characterized by reduced intracellular insulin signaling. Although there are many proposed causes of insulin resistance, the precise mechanisms that influence its long-term progression remain unclear. In this talk, we develop mathematical models to study the hypothesized role of oxidative stress and mitochondrial dysfunction in skeletal muscle insulin resistance. Simulation results suggest that a perfect storm of environmental and genetic factors leading to oxidative stress can confer protection on the individual cell via insulin resistance.
David Isaacson : Mathematical problems arising in the diagnosis and treatment of breast cancer.
- Mathematical Biology ( 132 Views )It will be explained how the following problems in the diagnosis and treatment of breast cancer have led to mathematical problems: 1. How can one improve the diagnosis of breast cancer? 2. How can one determine the growth rate of a cancer once it has been detected? 3. In which order should drugs be given in order to improve relapse and survival times? The first problem led to the design , construction, and testing of an electrical impedance spectroscopy system combined with an x- ray mammography system. The second problem led to a quantitative model to predict the growth rate of some cancers as a function of the number of Her2 and EGF receptors on the cells involved. The third problem led to quantitative models capable of predicting the outcome of specific chemotherapy regimens used by Bonadonna involving the use of CMF and A (Doxorubicin) for the adjuvant treatment of breast cancer.