Quicklists
public 01:14:53

Stephan Huckemann : Statistical challenges in shape prediction of biomolecules

  -   Mathematical Biology ( 176 Views )

The three-dimensional higher-order structure of biomolecules determines their functionality. While assessing primary structure is fairly easily accessible, reconstruction of higher order structure is costly. It often requires elaborate correction of atomic clashes, frequently not fully successful. Using RNA data, we describe a purely statistical method, learning error correction, drawing power from a two-scale approach. Our microscopic scale describes single suites by dihedral angles of individual atom bonds; here, addressing the challenge of torus principal component analysis (PCA) leads to a fundamentally new approach to PCA building on principal nested spheres by Jung et al. (2012). Based on an observed relationship with a mesoscopic scale, landmarks describing several suites, we use Fréchet means for angular shape and size-and-shape, correcting within-suite-backbone-to-backbone clashes. We validate this method by comparison to reconstructions obtained from simulations approximating biophysical chemistry and illustrate its power by the RNA example of SARS-CoV-2.

This is joint work with Benjamin Eltzner, Kanti V. Mardia and Henrik Wiechers.

Literature:

Eltzner, B., Huckemann, S. F., Mardia, K. V. (2018): Torus principal component analysis with applications to RNA structure. Ann. Appl. Statist. 12(2), 1332?1359.

Jung, S., Dryden, I. L., Marron, J. S. (2012): Analysis of principal nested spheres. Biometrika, 99 (3), 551-568

Mardia, K. V., Wiechers, H., Eltzner, B., Huckemann, S. F. (2022). Principal component analysis and clustering on manifolds. Journal of Multivariate Analysis, 188, 104862, https://www.sciencedirect.com/science/article/pii/S0047259X21001408

Wiechers, H., Eltzner, B., Mardia, K. V., Huckemann, S. F. (2021). Learning torus PCA based classification for multiscale RNA backbone structure correction with application to SARS-CoV-2. To appear in the Journal of the Royal Statistical Society, Series C, bioRxiv https://doi.org/10.1101/2021.08.06.455406

public 01:14:49

Leonid Berlyand : PDE/ODE models of motility in active biosystems

  -   Mathematical Biology ( 124 Views )

In the first part of the talk we present a review of our work on PDE models of swimming bacteria. First we introduce a stochastic PDE model for a dilute suspension of self-propelled bacteria and obtain an explicit asymptotic formula for the effective viscosity (E.V.) that explains the mechanisms of the drastic reduction of E.V.. Next, we introduce a model for semi-dilute suspensions with pairwise interactions and excluded volume constraints. We compute E.V. analytically (based on a kinetic theory approach) and numerically. Comparison with the dilute case leads to a phenomenon of stochasticity arising from a deterministic system. We develop a ODE/PDE model that captures the phase transition, an appearance of correlations and large scale structures due to interbacterial interactions. Collaborators: S. Ryan, B. Haines, (PSU students); I. Aronson, A. Sokolov, D. Karpeev (Argonne); In the second part of the talk we discuss a system of two parabolic PDEs arising in modeling of motility of eukaryotic cells on substrates. The two key properties of this system are (i) presence of gradients in the coupling terms (gradient coupling) and (ii) mass (volume) preservation constraints. We derive the equation of the motion of the cell boundary, which is the mean curvature motion perturbed by a novel nonlinear term and prove that the sharp interface property of initial conditions is preserved in time. This novel term leads to surprising features of the motion of the interface such as discontinuities of the interface velocity and hysteresis. This is joint work with V. Rybalko and M. Potomkin.

public 01:14:42

Rick Durrett : Overview of the semester

  -   Mathematical Biology ( 120 Views )

public 01:34:46

Friday is the start of spring break : no talk

  -   Mathematical Biology ( 115 Views )

public 01:34:20

Tom Witelski : The fluid dynamics of blinking

  -   Mathematical Biology ( 114 Views )

public 01:34:48

Samuel Friedman : Using MultiCellDS and digital cell lines to initialize large-scale 3-D agent-based cancer simulations (up to 0.5M cells)

  -   Mathematical Biology ( 110 Views )

Understanding and predicting cancer progression requires detailed interacting models of tumor and stromal cells, all calibrated to experimental data. Work to date has been limited by a lack of standardization of data representations of multicellular systems, though this is now being addressed through MultiCellDS (MultiCellular Data Standard) and digital cell lines, which are standardized representations of microenvironment-dependent cell phenotypes. Computational cancer modelers require biologically and mathematically consistent initialization routines to seed simulations with cells defined in digital cell lines. In this talk, we will briefly introduce a 3-D agent-based model designed for use in integrative computational biology. We introduce a Â?snapshot generatorÂ? that can take a digital cancer cell line and produce for the agent-based model an initial cell arrangement and a phenotypic state based upon analyses of the digital cell line data elements. We demonstrate 2-D monolayer and 3-D hanging drop simulations up to 500k MCF7 cells, a common breast cancer cell line. We additionally demonstrate the production of digital snapshots, standardized simulation output that will facilitate computational model comparison with a common core of analytical tools. With an early version of these tools, we assess the match between simulations and in vitro experiments. In the future, this work will be used to create and simulate combinations of tumor and stromal cells from appropriate digital cell lines in realistic tissue environments in order to understand, predict, and eventually control cancer progression in individual patients.

public 01:29:53

Mansoor Haider : Mixture Models for Cartilage Tissue Engineering in Biomaterial Scaffolds Seeded with Chondrocytes

  -   Mathematical Biology ( 100 Views )

Cartilage physiology is regulated by a single population of specialized cells called chondrocytes. The chondroyctes are sparsely distributed within the extracellular matrix (ECM) and maintain a state of homeostasis in healthy tissue. ECM degeneration due to osteoarthritis can lead to compete degradation of cartilage surfaces, necessitating total joint replacement. Chondrocytes can be utilized to regenerate cartilage via tissue engineering approaches in which these cells are seeded in biocompatible and degradable biopolymer or hydrogel scaffolds. In such systems, biosynthetic activity of the cells in response to their non-native environment results in regeneration and accumulation of ECM constituents concurrent with degradation of the surrounding scaffold material. In this talk, mixture models are presented for interactions between biosynthesis of ECM constituents and ECM linking in cell-seeded scaffolds. Both ODE-based (temporal) models for evolution of average apparent densities and PDE-based (spatio-temporal) models will be presented for variables including unlinked ECM, linked ECM and scaffold. Model extensions accounting for cell proliferation will also be discussed. Of particular interest are model predictions for the evolution of solid phase apparent density, which is correlated with the compressive elastic modulus of the tissue construct. These models provide a quantitative framework for assessing and optimizing the design of engineered cell-scaffold systems and guiding strategies for articular cartilage tissue engineering.

public 01:29:49

Anette Hosoi : Small Swimming Lessons: Optimizing Low Reynolds Number Locomotion

  -   Mathematical Biology ( 98 Views )

ABSTRACT: The past decade has seen a number of engineering innovations that make construction of devices of micro- and even nanometric dimensions feasible. Hence, there is a growing interest in exploring new and efficient ways to generate propulsion at these small scales. Here we explore optimization of one particular type of low Reynolds number propulsion mechanism Â? flagella. Beyond the general challenges associated with optimization, there are a number of issues that are unique to swimming at low Reynolds numbers. At small scales, the fluid equations of motion are linear and time-reversible, hence reciprocal motion Â? i.e., strokes that are symmetric with respect to time reversal Â? cannot generate any net translation (a limitation commonly referred to as the Scallop Theorem). One possible way to break this symmetry is through carefully chosen morphologies and kinematics. One symmetry-breaking solution commonly employed by eukaryotic microorganisms is to select nonreciprocal stroke patterns by actively generating torques at fixed intervals along the organism. Hence, we will address the question: For a given morphology, what are the optimal kinematics? In this talk we present optimal stroke patterns using biologically inspired geometries such as single-tailed spermatozoa and the double-tail morphology of Chlamydomonas, a genus of green alga widely considered to be a model system in molecular biology.

public 01:34:46

Spring Break : no talk

  -   Mathematical Biology ( 86 Views )

public 01:14:42

Spring Break : no talk

  -   Mathematical Biology ( 51 Views )