James Keener : Flexing your Protein muscles: How to Pull with a Burning Rope
- Mathematical Biology ( 727 Views )The segregation of chromosomes during cell division is accomplished by kinetochore machinery that uses depolymerizing microtubules to pull the chromosomes to opposite poles of the dividing cell. While much is known about molecular motors that pull by walking or push by polymerizing, the mechanism of how a pulling force can be achieved by depolymerization is still unresolved. In this talk, I will describe a new model for the depolymerization motor that is used by eukaryotic cells to segregate chromosomes during mitosis. In the process we will explore the use of Huxley-type models (population models) of protein binding and unbinding to study load-velocity curves of several different motor-like proteins.
Christine Heitsch : The Combinatorics of RNA Branching
- Mathematical Biology ( 304 Views )Understanding the folding of RNA sequences into three-dimensional structures is one of the fundamental challenges in molecular biology. For example, the branching of an RNA secondary structure is an important molecular characteristic yet difficult to predict correctly, especially for sequences on the scale of viral genomes. However, results from enumerative, probabilistic, analytic, and geometric combinatorics yield insights into RNA structure formation, and suggest new directions in viral capsid assembly.
Shweta Bansal : Got flu? Using small and big data to understand influenza transmission, surveillance and control
- Mathematical Biology ( 301 Views )Traditional infectious disease epidemiology is built on the foundation of high quality and high accuracy data on disease and behavior. While these data are usually characterized by smallsize, they benefit from designed sampling schemes that make it possible to make population-level inferences. On the other hand, digital infectious disease epidemiology uses existing digital traces, re-purposing them to identify patterns in health-related processes. In this talk, I will discuss our work using data from small epidemiological studies as well as administrative ??big data? to understand influenza transmission dynamics and inform disease surveillance and control.
John Gemmer : Nature??s Forms are Frilly, Flexible and Functional
- Mathematical Biology ( 259 Views )Many patterns in Nature and industry arise from the system minimizing an appropriate energy. Torn plastic sheets and growing leaves provide striking examples of pattern forming systems which can transition from single wavelength geometries (leaves) to complex fractal-like shapes (lettuce). These fractal-like patterns seem to have many length scales, i.e. the same amount of extra detail can be seen when looking closer (??statistical self-similarity?). It is a mystery how such complex patterns could arise from energy minimization alone. In this talk I will address this puzzle by showing that such patterns naturally arise from the sheet adopting a hyperbolic non-Euclidean geometry. However, there are many different hyperbolic geometries that the growing leaf could select. I will show using techniques from analysis, differential geometry and numerical optimization that the fractal like patterns are indeed the natural minimizers for the system. I will also discuss the implications of our work to developing shape changing soft matter which can be implemented in soft machines.
Sharon Lubkin : Notochord eccentricity and its relation to cell packing
- Mathematical Biology ( 252 Views )The notochord, the defining feature of chordates, is a pressurized tube which actuates elongation of the chordate embryo. The zebrafish notochord consists of large vacuolated cells surrounded by a thin sheath. We characterized the patterns of the cells?? packing, and their relationship to the known regular patterns from the study of foams, and irregular patterns in a gel bead system. Disruption of the wild type packing pattern leads to developmental defects. We characterize the bifurcations between the relevant regular patterns in terms of nondimensional geometrical and mechanical ratios, and suggest an important developmental role for the eccentric "staircase" pattern.
Rachel Howard : Monitoring the systemic immune response to cancer therapy
- Mathematical Biology ( 246 Views )Complex interactions occur between tumor and host immune system during cancer development and treatment, and a weak systemic immune response can be prognostic of poor patient outcomes. We strive to not only better understand the dynamic behavior of circulating immune cell populations before and during cancer therapy, but also to monitor these dynamic changes to facilitate real-time prediction of patient outcomes and potentially therapy adaptation. I will provide examples of both theoretical (mathematical) and data-driven (epidemiological) approaches to incorporating established systemic immune markers into clinical decision-making. First, coupling models of local tumor-immune dynamics and systemic T cell trafficking allows us to simulate the evolution of tumor and immune cell populations in anatomically distant sites following local therapy, in turn identifying the optimal treatment target for maximum reduction of global tumor burden. Second, improved understanding of how circulating immune markers vary both within and between individual patients can allow more accurate risk stratification at diagnosis, and personalized prediction of patient response to therapy. The importance of multi-disciplinary collaborations in making predictive and prognostic models clinically relevant will be discussed.
Daniel Lew : Modeling the effect of vesicle traffic on polarity establishment in yeast
- Mathematical Biology ( 231 Views )There are two generally accepted models for the cell biological positive feedback loops that allow yeast cells to break symmetry and establish an axis of polarity. Both have been subjects of published mathematical analyses. Here I will argue that the models used to support a vesicle trafficking model incorporated a simplifying assumption that seemed innocuous but in fact was critical to their success. The assumption is not physically plausible, and its removal means that the model fails. I will show how changing other assumptions can make the model work, but there is no experimental support for those changes. And without them, the vesicle trafficking model perturbs polarity, rather than establishing polarity
Veronica Ciocanel : Stochastic and continuum dynamics in cellular transport
- Mathematical Biology ( 227 Views )The cellular cytoskeleton ensures the dynamic transport, localization, and anchoring of various proteins and vesicles. In the development of egg cells into embryos, messenger RNA (mRNA) molecules bind and unbind to and from cellular roads called microtubules, switching between bidirectional transport, diffusion, and stationary states. Since models of intracellular transport can be analytically intractable, asymptotic methods are useful in understanding effective cargo transport properties as well as their dependence on model parameters. We consider these models in the framework of partial differential equations as well as stochastic processes and derive the effective velocity and diffusivity of cargo at large time for a general class of problems. Including the geometry of the microtubule filaments allows for better prediction of particle localization and for investigation of previously unexplored mechanisms. Our numerical studies incorporating model microtubule structures suggest that anchoring of mRNA-molecular motor complexes may be necessary in localization, to promote healthy development of oocytes into embryos.
Laura Miller : How jellyfish can inspire mathematics: A case study of the feeding currents generated by upside-down jellyfish
- Mathematical Biology ( 223 Views )The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In this presentation, we develop and test mathematical models describing the pulsing dynamics and the resulting fluid flow generated by the upside down jellyfish, Cassiopea. The kinematics of contraction and distributions of pulse frequencies were obtained from videos and used as inputs into numerical simulations. Particle image velocimetry was used to obtain spatially and temporally resolved flow fields experimentally. The immersed boundary method was then used to solve the fluid-structure interaction problem and explore how changes in morphology and pulsing dynamics alter the resulting fluid flow. Unlike pelagic (swimming) jellyfish, there is no evidence of the formation of a train of vortex rings. Instead, significant mixing occurs around and directly above the oral arms and secondary mouths. We found good agreement between the numerical simulations and experiments, suggesting that the presence of porous oral arms induce net horizontal flow towards the bell and mixing.
Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers
- Mathematical Biology ( 219 Views )Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment??naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.
John Dallon : Modeling Fibroblast Populated Collagen Lattices
- Mathematical Biology ( 215 Views )In order to better understand wound contraction fibroblast populated collagen lattices have been studied for many years. In this talk I will discuss mathematical models for lattice contraction. The models are formulated with components at the cellular and sub cellular level with the goal of understanding the macroscopic behavior of the lattice.
Andrew Brouwer : Harnessing environmental surveillance: mathematical modeling in the fight against polio
- Mathematical Biology ( 213 Views )Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013-14, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. However, we have lacked the theory to translate environmental surveillance into public health metrics; it is a priori unclear how much environmental surveillance can even say about population-level disease dynamics. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used differential algebra and profile likelihood techniques to perform identifiability analysis, that is, to assess how much information exists in the data for the model, and to quantify inference uncertainty. From the environmental surveillance data, we estimated the epidemic curve and transmission dynamics, determining that the outbreak likely happened much faster than previously thought. Our mathematical modeling approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.
Suncica Canic : Fluid-composite structure interaction and blood flow
- Mathematical Biology ( 210 Views )Fluid-structure interaction problems with composite structures arise in many applications. One example is the interaction between blood flow and arterial walls. Arterial walls are composed of several layers, each with different mechanical characteristics and thickness. No mathematical results exist so far that analyze existence of solutions to nonlinear, fluid-structure interaction problems in which the structure is composed of several layers. In this talk we will summarize the main difficulties in studying this class of problems, and present a computational scheme based on which a proof of the existence of a weak solution was obtained. Our results reveal a new physical regularizing mechanism in FSI problems: inertia of the thin fluid-structure interface with mass regularizes evolution of FSI solutions. Implications of our theoretical results on modeling the human cardiovascular system will be discussed. This is a joint work with Boris Muha (University of Zagreb, Croatia), Martina Bukac (U of Notre Dame, US) and Roland Glowinski (UH). Numerical results with vascular stents were obtained with S. Deparis and D. Forti (EPFL, Switzerland), and with A. Quaini (UH). Collaboration with medical doctors Dr. S. Little (Methodist Hospital Houston) and Dr. Z. Krajcer (Texas Heart Institute) is also acknowledged.
Grzegorz A. Rempala, PhD DSc : Contact Processes and Stochastic Models of Epidemics
- Mathematical Biology ( 204 Views )I will discuss some old and new results related to the analysis of stochastic SIR-type epidemics on a configuration model (CM) random graph having a fixed degree distribution p_k. In particular, I will describe the relevant large graph limit result which yields the law of large numbers (LLN) for the edge-based process. I will also discuss the applications of the LLN approximation in building a "network-free" SIR Markov hybrid model which can be used for epidemic parameters inference. The hybrid model idea appears particularly relevant in the context of the recent Ebola and the Zika epidemics.
Jeremy Gunawardena : The Hopfield Barrier in eukaryotic gene regulation
- Mathematical Biology ( 201 Views )John Hopfield pointed out, in his seminal paper on kinetic proofreading, that if a biochemical system operates at thermodynamic equilibrium there is a barrier to how well it can achieve high-fidelity in transcription and translation. Hopfield showed that the only way to bypass this barrier is to dissipate energy and maintain the system away from equilibrium. Eukaryotic gene regulation uses dissipative mechanisms, such as nucleosome remodelling, DNA methylation and post-translational modification of histones, which are known to play a critical regulatory role but have been largely ignored in quantitative treatments. I will describe joint work with my colleague Angela DePace in which we use the recently-developed, graph-theoretic ?linear framework? to show that the sharpness with which a gene is turned ?on? or ?off? in response to an upstream transcription factor is limited if the regulatory system operates at equilibrium, even with arbitrary degrees of higher-order cooperativity. In contrast, if the regulatory system is maintained away from equilibrium, substantially higher degrees of sharpness can be achieved. We suggest that achieving sharpness in gene regulation exhibits a Hopfield Barrier, and uncover, along the way, a new interpretation for the ubiquitously used, but poorly justified, Hill function.
Joshua Vogelstein : Consistent Graph Classification applied to Human Brain Connectome Data
- Mathematical Biology ( 193 Views )Graphs are becoming a favorite mathematical object for representation of data. Yet, statistical pattern recognition has focused almost entirely on vector valued data in Euclidean space. Graphs, however, live in graph space, which is non-Euclidean. Thus, most inference techniques are not even defined for graph valued data. Previous work in the classification of graph-valued data typically follows one of two recipes. (1) Vectorize the adjacency matrices of the graphs, and apply standard machine learning techniques. (2) Compute some number of graph invariants (e.g., clustering coefficient, or degree distribution) for each graph, and then apply standard machine learning techniques. We follow a different recipe based in the probabilistic theory of pattern recognition. First, we define a joint graph-class model. Given this model, we derive classifiers which we prove are consistent; that is, they converge to the Bayes optimal classifier. Specifically, we build two consistent classifiers for graph valued data, a parametric and a non-parametric version. In a sense, these classifiers span the spectrum of complexity, the former is consistent for graphs sampled from relatively simple random graph distributions, the latter is consistent for graphs sampled from (nearly) any random graph distribution. Although both classifiers assume that all our graphs have labeled vertices, we generalize these results to also incorporate unlabeled graphs, as well as weighted and multigraphs. We apply these graph classifiers to human brain data. Specifically, using diffusion MRI, we can obtain large brain-graphs (10,000 vertices) for each subject, where vertices correspond to voxels. We then coarsen the graphs spatially to obtain smaller (70 vertex) graphs per subject. Using <50 subjects, we are able to achieve nearly 85% classification accuracy, with results interpretable to neurobiologists with regard to the brain regions of interest.
Elliot Cartee : Control-Theoretic Models of Environmental Crime
- Mathematical Biology ( 188 Views )We present two models of perpetrators' decision-making in extracting resources from a protected area. It is assumed that the authorities conduct surveillance to counter the extraction activities, and that perpetrators choose their post-extraction paths to balance the time/hardship of travel against the expected losses from a possible detection. In our first model, the authorities are assumed to use ground patrols and the protected resources are confiscated as soon as the extractor is observed with them. The perpetrators' path-planning is modeled using the optimal control of randomly-terminated process. In our second model, the authorities use aerial patrols, with the apprehension of perpetrators and confiscation of resources delayed until their exit from the protected area. In this case the path-planning is based on multi-objective dynamic programming. Our efficient numerical methods are illustrated on several examples with complicated geometry and terrain of protected areas, non-uniform distribution of protected resources, and spatially non-uniform detection rates due to aerial or ground patrols.
David Basanta : The ecology of cancer: mathematical modelling and clinical implications
- Mathematical Biology ( 179 Views )Decades of research in cancer have yielded scant results other than highlighting the need for new approaches that could go beyond the tried and tested molecular-based ones. Recent clinical studies show that tumour heterogeneity and selection, the ingredients of Darwinian evolution, can explain cancer progression towards malignancy as well as recurrence after treatment. In this talk I will describe mathematical and computational models that explore cancer evolutionary dynamics and that can explain how the interactions between the tumour with its environment (the tumour ecosystem) can yield a better understanding of cancer biology and lead to better and more efficacious treatments for cancer patients.
Stephan Huckemann : Statistical challenges in shape prediction of biomolecules
- Mathematical Biology ( 176 Views )The three-dimensional higher-order structure of biomolecules
determines their functionality. While assessing primary structure is
fairly easily accessible, reconstruction of higher order structure is
costly. It often requires elaborate correction of atomic clashes,
frequently not fully successful. Using RNA data, we describe a purely
statistical method, learning error correction, drawing power from a
two-scale approach. Our microscopic scale describes single suites by
dihedral angles of individual atom bonds; here, addressing the
challenge of torus principal component analysis (PCA) leads to a
fundamentally new approach to PCA building on principal nested spheres
by Jung et al. (2012). Based on an observed relationship with a
mesoscopic scale, landmarks describing several suites, we use Fréchet
means for angular shape and size-and-shape, correcting
within-suite-backbone-to-backbone clashes. We validate this method by
comparison to reconstructions obtained from simulations approximating
biophysical chemistry and illustrate its power by the RNA example of
SARS-CoV-2.
This is joint work with Benjamin Eltzner, Kanti V. Mardia and Henrik
Wiechers.
Literature:
Eltzner, B., Huckemann, S. F., Mardia, K. V. (2018):
Torus principal component analysis with applications to RNA
structure. Ann. Appl. Statist. 12(2), 1332?1359.
Jung, S., Dryden, I. L., Marron, J. S. (2012):
Analysis of principal nested spheres. Biometrika, 99 (3), 551-568
Mardia, K. V., Wiechers, H., Eltzner, B., Huckemann, S. F. (2022).
Principal component analysis and clustering on manifolds. Journal of
Multivariate Analysis, 188, 104862,
https://www.sciencedirect.com/science/article/pii/S0047259X21001408
Wiechers, H., Eltzner, B., Mardia, K. V., Huckemann, S. F. (2021).
Learning torus PCA based classification for multiscale RNA backbone
structure correction with application to SARS-CoV-2. To appear in the
Journal of the Royal Statistical Society, Series C,
bioRxiv https://doi.org/10.1101/2021.08.06.455406
Stanca Ciupe : Models of antibody responses in HIV
- Mathematical Biology ( 174 Views )One of the first immunologic responses against HIV infection is the presence of neutralizing antibodies that seem able to inactivate several HIV strains. Moreover, in vitro studies have shown the existence of monoclonal antibodies that exhibit broad crossclade neutralizing potential. Yet their number is low and slow to develop in vivo. In this paper, we investigate the potential benefits of inducing poly-specific neutralizing antibodies in vivo throughout immunization. We develop a mathematical model that considers the activation of families of B lymphocytes producing poly-specific and strain-specific antibodies and use it to demonstrate that, even if such families are successful in producing neutralizing antibodies, competition between them may limit the poly-specific response allowing the virus to escape. We modify this model to account for viral evolution under the pressure of antibody responses in natural HIV infection as well as the need to neutralize more than one viral spike. The model can reproduce viral escape under certain conditions of B lymphocyte competition. Using these models we provide explanations for the observed antibody failure in controlling natural infection and predict quantitative measures that need to be satisfied for long-term control of HIV infection.
Seth Sullivant : Statistically-Consistent k-mer Methods for Phylogenetic Tree Reconstruction
- Mathematical Biology ( 166 Views )Frequencies of k-mers in sequences are sometimes used as a basis for inferring phylogenetic trees without first obtaining a multiple sequence alignment. We show that a standard approach of using the squared-Euclidean distance between k-mer vectors to approximate a tree metric can be statistically inconsistent. To remedy this, we derive model-based distance corrections for orthologous sequences without gaps, which lead to consistent tree inference. The identifiability of model parameters from k-mer frequencies is also studied. Finally, we report simulations showing the corrected distance out-performs many other k-mer methods, even when sequences are generated with an insertion and deletion process. These results have implications for multiple sequence alignment as well, since k-mer methods are usually the first step in constructing a guide tree for such algorithms. This is joint work with Elizabeth Allman and John Rhodes.
Rick Durrett : Spatial evolutionary games with weak selection
- Mathematical Biology ( 165 Views )Recently a mathematical theory has been developed for spatial games with weak selection, i.e., the payoff differences between strategies are small. The key to the analysis is that when space an time are suitably rescaled the limit is partial differential equation (PDE). This approach can be used to analyze all 2 x 2 games, but there are a number of 3 x 3 games for which the behavior of the limiting PDE is not known. In this talk we will describe simulation results for two cases that are not considered by rigorous results: rock-paper scissors and bistable games. We will begin by describing results for a two strategy game that arises from studying pancreatic cancer and shows that theoretical predictions work even when selection is not very weak. This is joint work with Mridu Nanda, a student at North Carolina School for Science and Math.
Darryl Shibata : Reconstructing Human Tumor Ancestries from their Genomes: Making Human Tissues Talk
- Mathematical Biology ( 163 Views )It is well-known that genomes encode ancestry through replication errors - on average the greater the numbers of differences between two genomes, the greater the time since they shared a common ancestor ("molecular clock hypothesis"). This approach is commonly used to infer ancestries of species and populations, and these same tools can be applied to somatic cell evolution, in particular to better infer ancestries of normal and neoplastic tissues. For example, by sampling from opposite sides of the same human colorectal tumor, one can coalesce back to the earliest tumor cells. Such studies reveal that many human colorectal tumors are simple single "Big Bang" expansions, with evidence of neutral evolution during growth. It may be possible to understand in detail what is impossible to directly observe - the first few divisions of human tumors.
John Bush : Biocapillarity
- Mathematical Biology ( 157 Views )We report the results of our integrated experimental and theoretical investigations of biological systems dominated by interfacial effects. Particular attention is given to elucidating natural strategies for water-repellency, walking on water, underwater breathing, and drinking.
Jacob Scott : Understanding the evolution of resistance: a comprehensive and integrated mathematical and experimental research program.
- Mathematical Biology ( 150 Views )The evolution of resistance remains an elusive problem in the treatment of both cancer and infectious disease, and represents one of the most important medical problems of our time. While the illnesses are different on several non-trivial levels including timescale and complexity, the underlying biological phenomenon is the same: Darwinian evolution. To comprehensively approach these problems, I have focussed my attention on building a broad suite of investigations centered around the causes and consequences of the evolutionary process in these contexts. I will discuss my and my collaborator's efforts to; model the evolutionary process on the genomic scale in both an analytic (Markov process) and stochastic (individual based model and inference) format; to quantify in vitro competition and interaction between cancer cell lines through an evolutionary game theoretic lens using time-lapse microscopy and computer vision; and to understand the evolutionary contingencies inherent in collateral sensitivity in E. coli and ALK mutated non-small cell lung cancer.
Aziz Yakubu : Mathematical Models of Malaria with Applications to Mali and USA
- Mathematical Biology ( 148 Views )In this talk, we will introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during wet season while minimizing the potential harmful effects of drug overdose, we will define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we will provide protocols that lead to small number of first malaria episodes during the wet season than the protocol of Coulibaly et al. In the second part of the talk, we will use our malaria model to "capture" the 2013 Centers of Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the US. Furthermore; we will use our "fitted" malaria models for the top 20 countries of malaria acquisition by US residents to study the impact of protecting US residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the 2013 CDC malaria surveillance data.
Jim Nolen : Sticky limit theorems for statistics in singular spaces.
- Mathematical Biology ( 147 Views )This talk is about extending classical limit theorems of probability (law of large numbers, central limit theorem) to a non-Euclidean setting. I'll talk about new and interesting phenomena observed when sampling independent points from certain singular geometric spaces. The main result is a limit theorem -- the "sticky central limit theorem" -- which applies to the mean or barycenter of a family of independent samples as the number of samples grows. The theorem shows that the geometry of the underlying space may have an interesting effect on the asymptotic fluctuations of the sample means, in a way that does not occur with independent samples in Euclidean space. One motivation for thinking about statistics in singular geometric spaces comes from evolutionary biology; one can consider phylogenetic trees as points in a metric space of the sort discussed in this talk. Apart from this basic motivation, however, the talk will have little biological content and will be mainly about probability.