## Christine Heitsch : The Combinatorics of RNA Branching

- Mathematical Biology ( 301 Views )Understanding the folding of RNA sequences into three-dimensional structures is one of the fundamental challenges in molecular biology. For example, the branching of an RNA secondary structure is an important molecular characteristic yet difficult to predict correctly, especially for sequences on the scale of viral genomes. However, results from enumerative, probabilistic, analytic, and geometric combinatorics yield insights into RNA structure formation, and suggest new directions in viral capsid assembly.

## Grzegorz A. Rempala, PhD DSc : Contact Processes and Stochastic Models of Epidemics

- Mathematical Biology ( 201 Views )I will discuss some old and new results related to the analysis of stochastic SIR-type epidemics on a configuration model (CM) random graph having a fixed degree distribution p_k. In particular, I will describe the relevant large graph limit result which yields the law of large numbers (LLN) for the edge-based process. I will also discuss the applications of the LLN approximation in building a "network-free" SIR Markov hybrid model which can be used for epidemic parameters inference. The hybrid model idea appears particularly relevant in the context of the recent Ebola and the Zika epidemics.

## David Basanta : The ecology of cancer: mathematical modelling and clinical implications

- Mathematical Biology ( 177 Views )Decades of research in cancer have yielded scant results other than highlighting the need for new approaches that could go beyond the tried and tested molecular-based ones. Recent clinical studies show that tumour heterogeneity and selection, the ingredients of Darwinian evolution, can explain cancer progression towards malignancy as well as recurrence after treatment. In this talk I will describe mathematical and computational models that explore cancer evolutionary dynamics and that can explain how the interactions between the tumour with its environment (the tumour ecosystem) can yield a better understanding of cancer biology and lead to better and more efficacious treatments for cancer patients.

## Seth Sullivant : Statistically-Consistent k-mer Methods for Phylogenetic Tree Reconstruction

- Mathematical Biology ( 165 Views )Frequencies of k-mers in sequences are sometimes used as a basis for inferring phylogenetic trees without first obtaining a multiple sequence alignment. We show that a standard approach of using the squared-Euclidean distance between k-mer vectors to approximate a tree metric can be statistically inconsistent. To remedy this, we derive model-based distance corrections for orthologous sequences without gaps, which lead to consistent tree inference. The identifiability of model parameters from k-mer frequencies is also studied. Finally, we report simulations showing the corrected distance out-performs many other k-mer methods, even when sequences are generated with an insertion and deletion process. These results have implications for multiple sequence alignment as well, since k-mer methods are usually the first step in constructing a guide tree for such algorithms. This is joint work with Elizabeth Allman and John Rhodes.

## Rick Durrett : Spatial evolutionary games with weak selection

- Mathematical Biology ( 163 Views )Recently a mathematical theory has been developed for spatial games with weak selection, i.e., the payoff differences between strategies are small. The key to the analysis is that when space an time are suitably rescaled the limit is partial differential equation (PDE). This approach can be used to analyze all 2 x 2 games, but there are a number of 3 x 3 games for which the behavior of the limiting PDE is not known. In this talk we will describe simulation results for two cases that are not considered by rigorous results: rock-paper scissors and bistable games. We will begin by describing results for a two strategy game that arises from studying pancreatic cancer and shows that theoretical predictions work even when selection is not very weak. This is joint work with Mridu Nanda, a student at North Carolina School for Science and Math.

## Darryl Shibata : Reconstructing Human Tumor Ancestries from their Genomes: Making Human Tissues Talk

- Mathematical Biology ( 162 Views )It is well-known that genomes encode ancestry through replication errors - on average the greater the numbers of differences between two genomes, the greater the time since they shared a common ancestor ("molecular clock hypothesis"). This approach is commonly used to infer ancestries of species and populations, and these same tools can be applied to somatic cell evolution, in particular to better infer ancestries of normal and neoplastic tissues. For example, by sampling from opposite sides of the same human colorectal tumor, one can coalesce back to the earliest tumor cells. Such studies reveal that many human colorectal tumors are simple single "Big Bang" expansions, with evidence of neutral evolution during growth. It may be possible to understand in detail what is impossible to directly observe - the first few divisions of human tumors.

## Michael Mackey : Understanding, treating and avoiding hematological disease

- Mathematical Biology ( 156 Views )This talk will trace many years of work mathematical modeling hematological diseases. The understand part talks about the use of mathematical to figure out what causes cyclical neutropenia, and the treat part refers to work on treating cyclical neutropenia using recombinant cytokines. The avoid part deals with current ongoing work trying to obviate the deleterious effects of chemotherapy on blood cell productionone of the major negative side effects of chemotherapy.

## Adriana Dawes : Protein localization at the single cell level: Interplay between biochemistry, mechanics and geometry

- Mathematical Biology ( 152 Views )Cells are highly organized and complex structures, with the capacity to segregate specific factors to spatially disjoint regions in a process called polarization. Polarization, which specifies a spatial axis in the cell, is a highly conserved biological process and is required for proper embryonic development, wound healing, and many other normal and pathological biological functions. Despite the importance of polarization, we do not fully understand how this protein segregation is initiated and maintained. In this talk, I will show how we can use numerical and analytical approaches to investigate how symmetry breaking begins the process of polarization, and how the geometry of the cell may play a role in the establishment and maintenance of spatial patterns associated with polarization.

## Jacob Scott : Understanding the evolution of resistance: a comprehensive and integrated mathematical and experimental research program.

- Mathematical Biology ( 149 Views )The evolution of resistance remains an elusive problem in the treatment of both cancer and infectious disease, and represents one of the most important medical problems of our time. While the illnesses are different on several non-trivial levels including timescale and complexity, the underlying biological phenomenon is the same: Darwinian evolution. To comprehensively approach these problems, I have focussed my attention on building a broad suite of investigations centered around the causes and consequences of the evolutionary process in these contexts. I will discuss my and my collaborator's efforts to; model the evolutionary process on the genomic scale in both an analytic (Markov process) and stochastic (individual based model and inference) format; to quantify in vitro competition and interaction between cancer cell lines through an evolutionary game theoretic lens using time-lapse microscopy and computer vision; and to understand the evolutionary contingencies inherent in collateral sensitivity in E. coli and ALK mutated non-small cell lung cancer.

## Aziz Yakubu : Mathematical Models of Malaria with Applications to Mali and USA

- Mathematical Biology ( 148 Views )In this talk, we will introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during wet season while minimizing the potential harmful effects of drug overdose, we will define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we will provide protocols that lead to small number of first malaria episodes during the wet season than the protocol of Coulibaly et al. In the second part of the talk, we will use our malaria model to "capture" the 2013 Centers of Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the US. Furthermore; we will use our "fitted" malaria models for the top 20 countries of malaria acquisition by US residents to study the impact of protecting US residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the 2013 CDC malaria surveillance data.

## Jim Nolen : Sticky limit theorems for statistics in singular spaces.

- Mathematical Biology ( 144 Views )This talk is about extending classical limit theorems of probability (law of large numbers, central limit theorem) to a non-Euclidean setting. I'll talk about new and interesting phenomena observed when sampling independent points from certain singular geometric spaces. The main result is a limit theorem -- the "sticky central limit theorem" -- which applies to the mean or barycenter of a family of independent samples as the number of samples grows. The theorem shows that the geometry of the underlying space may have an interesting effect on the asymptotic fluctuations of the sample means, in a way that does not occur with independent samples in Euclidean space. One motivation for thinking about statistics in singular geometric spaces comes from evolutionary biology; one can consider phylogenetic trees as points in a metric space of the sort discussed in this talk. Apart from this basic motivation, however, the talk will have little biological content and will be mainly about probability.

## Dan Forger : From a model network of 10,000 neurons to a smartphone app with >150,000 users: novel approaches to study daily timekeeping

- Mathematical Biology ( 143 Views )I will briefly describe mathematical models of networks of neurons and chemical reactions within neurons that generate daily (circadian) timekeeping. The numerical and analytical challenges of these models as well as the benefits in terms of biological predications will be highlighted. I will then explain how models can be used to find schedules that decrease the time needed to adjust to a new timezone by a factor of 2 or more. These optimal schedules have been implemented into a smartphone app, ENTRAIN, which collects data from users and in return helps them avoid jet-lag. We will use the data from this app to determine how the world sleeps. This presents a new paradigm in mathematical biology research where large-scale computing bridges the gap between basic mechanisms and human behavior and yields hypotheses that can be rapidly tested using mobile technology.

## Phil Holmes : The neural dynamics of decision making: multiple scales in a single brain

- Mathematical Biology ( 140 Views )I will describe a range of models, from the cellular to cortical scales, that illuminate how we perceive stimuli and make decisions. Large networks composed of individual spiking neurons can capture biophysical details of neuromodulation and synaptic transmission, but their complexity renders them opaque to analysis. Employing methods of mean field and dynamical systems theory, I will argue that these high-dimensional stochastic differential equations can be reduced to simple drift-diffusion processes used by cognitive psychologists to fit behavioral data. This allows us to relate them to optimal methods from statistical decision theory, and prompts new questions on why we fail to make good choices.

## Jake Taylor-King : Generalized Jump Processes and Osteocyte Network Formation

- Mathematical Biology ( 139 Views )My talk will have two parts. PART I, From Birds to Bacteria: Generalised Velocity Jump Processes. There are various cases of animal movement where behaviour broadly switches between two modes of operation, corresponding to a long distance movement state and a resting or local movement state. In this talk, I will give a mathematical description of this process, adapted from Friedrich et. al. (2006). The approach allows the specification any running or waiting time distribution along with any angular and speed distributions. The resulting system of partial integro-differential equations are tumultuous and therefore it is necessary to both simplify and derive summary statistics. We derive an expression for the mean squared displacement, which shows good agreement with experimental data from the bacterium Escherichia coli and the gull Larus fuscus. Finally a large time diffusive approximation is considered via a Cattaneo approximation (Hillen, 2004). This leads to the novel result that the effective diffusion constant is dependent on the mean and variance of the running time distribution but only on the mean of the waiting time distribution. We also consider the Levy regime where the variance of the running distribution tends to infinity. This leads to a fractional diffusion equation for superdiffusive Levy walks and can be solved analytically. Our theory opens up new perspectives both for the systematic derivation of such equations, and for experimental data analysis of intermittent motion. I will also briefly discuss recent developments (by other researchers) within the field of velocity jump processes. PART II: Modelling Osteocyte Network Formation: Healthy and Cancerous Environments. Advanced prostate, breast, and lung cancer can metastasize to bone. In pathological bone, the highly regulated bone remodeling signaling pathway is disrupted. Within bone dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone formation. In the presence of a cancerous microenvironment, the morphology of this network changes. Commonly osteocytes appear to be either overdifferentiated (i.e., there are more dendrites) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, preliminary studies measuring the number of osteocytes per unit area using pathology slides show that the number density of osteocytes change from healthy to metastatic prostate and breast cancer xenografted mice. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and number density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We consider variations of our model to test specific physiological hypotheses related to osteoblast differentiation; for example we can predict how changing measurable biological parameters, such as rates of bone secretion, rates of dendrite growth and rates of osteoblast differentiation can allow for qualitatively different network morphologies, and vice versa. We thenuse our model to hypothesize reasons for the limited efficacy of zoledronate therapy on metastatic breast cancer.

## Joshua Vogelstein : Two-Sample Testing of Non-Euclidean (eg, Graph-Valued) Data via Manifold Learning

- Mathematical Biology ( 138 Views )Two-sample tests are an important class of problems in statistics, with abundant applications ranging from astrophysics to zoology. However, much of the previous art assumes the data samples live in finite dimensional Euclidean space. Here, we consider a foray into two-sample testing when the objects live in a non-Euclidean space, with special emphasis on graph valued observations. Via embedding each graph into Euclidean space, and then learning a manifold along which the reside, we demonstrate the existence of a test such that for a given confidence level alpha, we obtain power > alpha. Simulations and real data applications demonstrate the pragmatic utility of our approach even for very large graphs.

## Hans Othmer : A hybrid model of tumor-stromal interactions in breast cancer

- Mathematical Biology ( 137 Views )Ductal carcinoma in situ (DCIS) is an early stage non-invasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. We will discuss a mathematical model that incorporates the cross-talk between stromal and tumor cells, and which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-$\beta$ signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation, and describe a hybrid model for the interaction of cells with the tumor microenvironment. The analysis sheds light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggests how epigenetic changes in transformed cells affect tumor progression.

## L. Ridgway Scott : Digital biology: protein-ligand interactions

- Mathematical Biology ( 136 Views )The digital nature of biology is crucial to its functioning as an information system, as well in building hierarchical components in a repeatable way. We explain how protein systems can function as discrete components, despite the importance of non-specific forces due to the hydrophobic effect. That is, we address the question of why proteins bind to ligands predictably and not in a continuous distribution of places, the way grease forms into blobs. We will give a detailed description of how data mining in the PDB can reveal how proteins interact. We highlight the role of the hydrophobic effect, but we see that it works inversely to the usual concept of hydrophobic interaction. Our work suggests the need for a more accurate model of the dielectric effect in the vicinity of a protein surface, and we discuss some advances in this direction. Our research also provides an understanding of how molecular recognition and signaling can evolve. We give an example of the use of our ideas in drug design.

## Jill Galagher : Targeting the phenotype: Treatment strategies for heterogeneous cancer

- Mathematical Biology ( 132 Views )Targeted cancer drugs attack pathway specific phenotypes and can lead to very positive outcomes when a particular phenotype dominates the population of a specific tumor. However, these drugs often fail because not all cells express the targeted phenotype to the same degree. This leads to a heterogeneous response to treatment, and ultimate recurrence of the cancer as sensitive cells die off and resistant cells take over. We explore how treatment strategies informed by a tumors phenotypic mix, can help slow the emergence of resistance and stave off tumor recurrence. We use an off-lattice agent-based model that incorporates inheritance of two phenotypes proliferation rate and migration speed and is modulated by a space limiting selection force. We find how and when distinct distributions of phenotypes require different treatment strategies.

## Anita Layton : Myogenic Response to Systolic Pressure in the Afferent Arteriole

- Mathematical Biology ( 131 Views )Elevations in systolic blood pressure are believed to be closely linked to the pathogenesis and progression of renal diseases. It has been hypothesized that the afferent arteriole (AA) protects the glomerulus from the damaging effects of hypertension by sensing increases in systolic blood pressure and responding with a compensatory vasoconstriction. To investigate this hypothesis, we developed a mathematical model of the myogenic response of an AA smooth muscle cell, based on an arteriole model by Gonzalez-Fernandez and Ermentrout (Math Biosci 1994). renal hemodynamic regulation. The model incorporates ionic transport, cell membrane potential, contraction of the AA smooth muscle cell, and the mechanics of a thick-walled cylinder. The model represents a myogenic response based on a pressure-induced shift in the voltage dependence of calcium channel openings: with increasing transmural pressure, model vessel diameter decreases; and with decreasing pressure, vessel diameter increases. Further, the model myogenic mechanism includes a rate-sensitive component that yields constriction and dilation kinetics similar to behaviors observed in vitro. A parameter set is identified based on physical dimensions of an AA in a rat kidney. Model results suggest that the interaction of Ca2+ and K+ fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively, gives rise to periodicity in the transport of the two ions. This results in a time-periodic cytoplasmic calcium concentration, myosin light chains phosphorylation, and crossbridges formation with the attending muscle stress. Further, the model predicts myogenic responses that agree with experimental observations, most notably those which demonstrate that the renal AA constricts in response to increases in both steady and systolic blood pressures. The myogenic model captures these essential functions of the renal AA, and it may prove useful as a fundamental component in a multi-scale model of the renal microvasculature suitable for investigations of the pathogenesis of hypertensive renal diseases.

## Erica Graham : On the Road to Insulin Resistance: Modeling Oxidative Stress-Mediated Dysfunction in Skeletal Muscle

- Mathematical Biology ( 130 Views )Insulin resistance, a major factor in type 2 diabetes development, is a systemic defect characterized by reduced intracellular insulin signaling. Although there are many proposed causes of insulin resistance, the precise mechanisms that influence its long-term progression remain unclear. In this talk, we develop mathematical models to study the hypothesized role of oxidative stress and mitochondrial dysfunction in skeletal muscle insulin resistance. Simulation results suggest that a perfect storm of environmental and genetic factors leading to oxidative stress can confer protection on the individual cell via insulin resistance.

## David Isaacson : Mathematical problems arising in the diagnosis and treatment of breast cancer.

- Mathematical Biology ( 130 Views )It will be explained how the following problems in the diagnosis and treatment of breast cancer have led to mathematical problems: 1. How can one improve the diagnosis of breast cancer? 2. How can one determine the growth rate of a cancer once it has been detected? 3. In which order should drugs be given in order to improve relapse and survival times? The first problem led to the design , construction, and testing of an electrical impedance spectroscopy system combined with an x- ray mammography system. The second problem led to a quantitative model to predict the growth rate of some cancers as a function of the number of Her2 and EGF receptors on the cells involved. The third problem led to quantitative models capable of predicting the outcome of specific chemotherapy regimens used by Bonadonna involving the use of CMF and A (Doxorubicin) for the adjuvant treatment of breast cancer.

## Aaron Fogelson : Two Examples of Chemical Modulation of the Properties and Dynamics of Physiological Gels: Fibrin Formation and Mucin Swelling

- Mathematical Biology ( 129 Views )Gels formed from mixtures of polymers and solvent are ubiquitous in physiological systems. The structure and properties of a gel can change dramatically in response to chemical modulation. Two examples of the influence of chemistry on gel properties will be discussed. The structure of fibrin gels that form during blood clotting is strongly influenced by the concentration of the enzyme thrombin that produces the fibrin monomers from which the gel is built. Presumably at higher thrombin concentrations, fibrin monomers are produced more rapidly from the precursor fibrinogen molecules. I will present an analysis of a possible mechanism of fibrin branching that can explain the sensitivity of fibrin structure to the rate of supply of monomers. Mucin gel is released from vesicles in goblet cells. During this exocytotic process, the polyelectrolyte mucin gel swells to many times its original volume at a very rapid rate. I will present a model in which this swelling is triggered by an exchange of divalent calcium ions in the vesicle and monovalent sodium ions in the extracellular space, and in which the ion concentrations and the rheological properties of the mucin gel determine its equilibrium size and the dynamics of its swelling.

## Marisa Eisenberg : Forecasting and uncertainty in modeling disease dynamics

- Mathematical Biology ( 127 Views )Connecting dynamic models with data to yield predictive results often requires a variety of parameter estimation, identifiability, and uncertainty quantification techniques. These approaches can help to determine what is possible to estimate from a given model and data set, and help guide new data collection. Here, we examine how parameter estimation and disease forecasting are affected when examining disease transmission via multiple types or pathways of transmission. Using examples taken from the West Africa Ebola epidemic, HPV, and cholera, we illustrate some of the potential difficulties in estimating the relative contributions of different transmission pathways, and show how alternative data collection may help resolve this unidentifiability. We also illustrate how even in the presence of large uncertainties in the data and model parameters, it may still be possible to successfully forecast disease dynamics.

## Rafael Meza : Applications of stochastic models of carcinogenesis in cancer prevention

- Mathematical Biology ( 126 Views )Carcinogenesis is the transformation of normal cells into cancer cells. This process has been shown to be of a multistage nature, with stem cells that go through a series of (stochastic) genetic and epigenetic changes that eventually lead to a malignancy. Since the origins of the multistage theory in the 1950s, mathematical modeling has played a prominent role in the investigation of the mechanisms of carcinogenesis. In particular, two stochastic (mechanistic) models, the Armitage-Doll and the two-stage clonal expansion (TSCE) model, have been widely used in the past for cancer risk assessment and for the analysis of cancer population and experimental data. In this talk, I will introduce some of the biological and mathematical concepts behind the theory of multistage carcinogenesis, and discuss in detail the use of these models in cancer epidemiology and cancer prevention and control. Recent applications of multistage and state-transition Markov models to assess the potential impact of lung cancer screening in the US will be reviewed.

## Yuan Lou : Finding Evolutionarily Stable Strategies

- Mathematical Biology ( 124 Views )From habitat degradation and climate change to spatial spread of invasive species, dispersal plays a central role in determining how organisms cope with a changing environment. How should organisms disperse optimally in heterogeneous environments? I will discuss some recent development on the evolution of dispersal, focusing on evolutionarily stable strategies (ESS) for dispersal.

## Carina Curto : Convex neural codes

- Mathematical Biology ( 124 Views )Cracking the neural code is one of the central challenges of neuroscience. Typically, this has been understood as finding the relationship between single neurons and the stimuli they represent. More generally, neural activity must also reflect relationships between stimuli, such as proximity between locations in an environment. Convex codes, comprised of activity patterns for neurons with classical receptive fields, may be the brain's solution to this problem. These codes have been observed in many areas, including sensory cortices and the hippocampus. What makes a code convex? Using algebra, we can uncover intrinsic signatures of convexity and dimension in neural codes. I will report on some recent results by multiple authors, including participants in my 2014 AMS Math Research Community.