James Keener : Flexing your Protein muscles: How to Pull with a Burning Rope
- Mathematical Biology ( 727 Views )The segregation of chromosomes during cell division is accomplished by kinetochore machinery that uses depolymerizing microtubules to pull the chromosomes to opposite poles of the dividing cell. While much is known about molecular motors that pull by walking or push by polymerizing, the mechanism of how a pulling force can be achieved by depolymerization is still unresolved. In this talk, I will describe a new model for the depolymerization motor that is used by eukaryotic cells to segregate chromosomes during mitosis. In the process we will explore the use of Huxley-type models (population models) of protein binding and unbinding to study load-velocity curves of several different motor-like proteins.
Christine Heitsch : The Combinatorics of RNA Branching
- Mathematical Biology ( 304 Views )Understanding the folding of RNA sequences into three-dimensional structures is one of the fundamental challenges in molecular biology. For example, the branching of an RNA secondary structure is an important molecular characteristic yet difficult to predict correctly, especially for sequences on the scale of viral genomes. However, results from enumerative, probabilistic, analytic, and geometric combinatorics yield insights into RNA structure formation, and suggest new directions in viral capsid assembly.
John Gemmer : Nature’s Forms are Frilly, Flexible and Functional
- Mathematical Biology ( 259 Views )Many patterns in Nature and industry arise from the system minimizing an appropriate energy. Torn plastic sheets and growing leaves provide striking examples of pattern forming systems which can transition from single wavelength geometries (leaves) to complex fractal-like shapes (lettuce). These fractal-like patterns seem to have many length scales, i.e. the same amount of extra detail can be seen when looking closer (“statistical self-similarity”). It is a mystery how such complex patterns could arise from energy minimization alone. In this talk I will address this puzzle by showing that such patterns naturally arise from the sheet adopting a hyperbolic non-Euclidean geometry. However, there are many different hyperbolic geometries that the growing leaf could select. I will show using techniques from analysis, differential geometry and numerical optimization that the fractal like patterns are indeed the natural minimizers for the system. I will also discuss the implications of our work to developing shape changing soft matter which can be implemented in soft machines.
Rachel Howard : Monitoring the systemic immune response to cancer therapy
- Mathematical Biology ( 246 Views )Complex interactions occur between tumor and host immune system during cancer development and treatment, and a weak systemic immune response can be prognostic of poor patient outcomes. We strive to not only better understand the dynamic behavior of circulating immune cell populations before and during cancer therapy, but also to monitor these dynamic changes to facilitate real-time prediction of patient outcomes and potentially therapy adaptation. I will provide examples of both theoretical (mathematical) and data-driven (epidemiological) approaches to incorporating established systemic immune markers into clinical decision-making. First, coupling models of local tumor-immune dynamics and systemic T cell trafficking allows us to simulate the evolution of tumor and immune cell populations in anatomically distant sites following local therapy, in turn identifying the optimal treatment target for maximum reduction of global tumor burden. Second, improved understanding of how circulating immune markers vary both within and between individual patients can allow more accurate risk stratification at diagnosis, and personalized prediction of patient response to therapy. The importance of multi-disciplinary collaborations in making predictive and prognostic models clinically relevant will be discussed.
Laura Miller : How jellyfish can inspire mathematics: A case study of the feeding currents generated by upside-down jellyfish
- Mathematical Biology ( 223 Views )The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In this presentation, we develop and test mathematical models describing the pulsing dynamics and the resulting fluid flow generated by the upside down jellyfish, Cassiopea. The kinematics of contraction and distributions of pulse frequencies were obtained from videos and used as inputs into numerical simulations. Particle image velocimetry was used to obtain spatially and temporally resolved flow fields experimentally. The immersed boundary method was then used to solve the fluid-structure interaction problem and explore how changes in morphology and pulsing dynamics alter the resulting fluid flow. Unlike pelagic (swimming) jellyfish, there is no evidence of the formation of a train of vortex rings. Instead, significant mixing occurs around and directly above the oral arms and secondary mouths. We found good agreement between the numerical simulations and experiments, suggesting that the presence of porous oral arms induce net horizontal flow towards the bell and mixing.
Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers
- Mathematical Biology ( 219 Views )Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment‑naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.
Suncica Canic : Fluid-composite structure interaction and blood flow
- Mathematical Biology ( 210 Views )Fluid-structure interaction problems with composite structures arise in many applications. One example is the interaction between blood flow and arterial walls. Arterial walls are composed of several layers, each with different mechanical characteristics and thickness. No mathematical results exist so far that analyze existence of solutions to nonlinear, fluid-structure interaction problems in which the structure is composed of several layers. In this talk we will summarize the main difficulties in studying this class of problems, and present a computational scheme based on which a proof of the existence of a weak solution was obtained. Our results reveal a new physical regularizing mechanism in FSI problems: inertia of the thin fluid-structure interface with mass regularizes evolution of FSI solutions. Implications of our theoretical results on modeling the human cardiovascular system will be discussed. This is a joint work with Boris Muha (University of Zagreb, Croatia), Martina Bukac (U of Notre Dame, US) and Roland Glowinski (UH). Numerical results with vascular stents were obtained with S. Deparis and D. Forti (EPFL, Switzerland), and with A. Quaini (UH). Collaboration with medical doctors Dr. S. Little (Methodist Hospital Houston) and Dr. Z. Krajcer (Texas Heart Institute) is also acknowledged.
Arthur Sherman : Diabetes Pathogenesis as a Threshold-Crossing Process
- Mathematical Biology ( 205 Views )It has long been accepted that type 1 diabetes results from a lack of insulin, as the insulin-secreting pancreatic beta cells are destroyed by an autoimmune process. In contrast, the cause of type 2 diabetes (T2D) is less clear. Most people with pre-diabetes or in the early stages of T2D have abnormally high plasma insulin concentrations, and insulin rises before glucose does. We show that these difficulties are resolved by a mathematical model in which the onset of T2D is represented by the crossing of a threshold. The threshold is atypical in some respects and requires consideration of the slow manifolds to avoid incorrect conclusions.
Grzegorz A. Rempala, PhD DSc : Contact Processes and Stochastic Models of Epidemics
- Mathematical Biology ( 204 Views )I will discuss some old and new results related to the analysis of stochastic SIR-type epidemics on a configuration model (CM) random graph having a fixed degree distribution p_k. In particular, I will describe the relevant large graph limit result which yields the law of large numbers (LLN) for the edge-based process. I will also discuss the applications of the LLN approximation in building a "network-free" SIR Markov hybrid model which can be used for epidemic parameters inference. The hybrid model idea appears particularly relevant in the context of the recent Ebola and the Zika epidemics.
Jeremy Gunawardena : The Hopfield Barrier in eukaryotic gene regulation
- Mathematical Biology ( 201 Views )John Hopfield pointed out, in his seminal paper on kinetic proofreading, that if a biochemical system operates at thermodynamic equilibrium there is a barrier to how well it can achieve high-fidelity in transcription and translation. Hopfield showed that the only way to bypass this barrier is to dissipate energy and maintain the system away from equilibrium. Eukaryotic gene regulation uses dissipative mechanisms, such as nucleosome remodelling, DNA methylation and post-translational modification of histones, which are known to play a critical regulatory role but have been largely ignored in quantitative treatments. I will describe joint work with my colleague Angela DePace in which we use the recently-developed, graph-theoretic linear framework to show that the sharpness with which a gene is turned on or off in response to an upstream transcription factor is limited if the regulatory system operates at equilibrium, even with arbitrary degrees of higher-order cooperativity. In contrast, if the regulatory system is maintained away from equilibrium, substantially higher degrees of sharpness can be achieved. We suggest that achieving sharpness in gene regulation exhibits a Hopfield Barrier, and uncover, along the way, a new interpretation for the ubiquitously used, but poorly justified, Hill function.
Cristan Tomasetti : Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention
- Mathematical Biology ( 193 Views )Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations.
Elliot Cartee : Control-Theoretic Models of Environmental Crime
- Mathematical Biology ( 188 Views )We present two models of perpetrators' decision-making in extracting resources from a protected area. It is assumed that the authorities conduct surveillance to counter the extraction activities, and that perpetrators choose their post-extraction paths to balance the time/hardship of travel against the expected losses from a possible detection. In our first model, the authorities are assumed to use ground patrols and the protected resources are confiscated as soon as the extractor is observed with them. The perpetrators' path-planning is modeled using the optimal control of randomly-terminated process. In our second model, the authorities use aerial patrols, with the apprehension of perpetrators and confiscation of resources delayed until their exit from the protected area. In this case the path-planning is based on multi-objective dynamic programming. Our efficient numerical methods are illustrated on several examples with complicated geometry and terrain of protected areas, non-uniform distribution of protected resources, and spatially non-uniform detection rates due to aerial or ground patrols.
David Basanta : The ecology of cancer: mathematical modelling and clinical implications
- Mathematical Biology ( 179 Views )Decades of research in cancer have yielded scant results other than highlighting the need for new approaches that could go beyond the tried and tested molecular-based ones. Recent clinical studies show that tumour heterogeneity and selection, the ingredients of Darwinian evolution, can explain cancer progression towards malignancy as well as recurrence after treatment. In this talk I will describe mathematical and computational models that explore cancer evolutionary dynamics and that can explain how the interactions between the tumour with its environment (the tumour ecosystem) can yield a better understanding of cancer biology and lead to better and more efficacious treatments for cancer patients.
Stanca Ciupe : Models of antibody responses in HIV
- Mathematical Biology ( 174 Views )One of the first immunologic responses against HIV infection is the presence of neutralizing antibodies that seem able to inactivate several HIV strains. Moreover, in vitro studies have shown the existence of monoclonal antibodies that exhibit broad crossclade neutralizing potential. Yet their number is low and slow to develop in vivo. In this paper, we investigate the potential benefits of inducing poly-specific neutralizing antibodies in vivo throughout immunization. We develop a mathematical model that considers the activation of families of B lymphocytes producing poly-specific and strain-specific antibodies and use it to demonstrate that, even if such families are successful in producing neutralizing antibodies, competition between them may limit the poly-specific response allowing the virus to escape. We modify this model to account for viral evolution under the pressure of antibody responses in natural HIV infection as well as the need to neutralize more than one viral spike. The model can reproduce viral escape under certain conditions of B lymphocyte competition. Using these models we provide explanations for the observed antibody failure in controlling natural infection and predict quantitative measures that need to be satisfied for long-term control of HIV infection.
Seth Sullivant : Statistically-Consistent k-mer Methods for Phylogenetic Tree Reconstruction
- Mathematical Biology ( 166 Views )Frequencies of k-mers in sequences are sometimes used as a basis for inferring phylogenetic trees without first obtaining a multiple sequence alignment. We show that a standard approach of using the squared-Euclidean distance between k-mer vectors to approximate a tree metric can be statistically inconsistent. To remedy this, we derive model-based distance corrections for orthologous sequences without gaps, which lead to consistent tree inference. The identifiability of model parameters from k-mer frequencies is also studied. Finally, we report simulations showing the corrected distance out-performs many other k-mer methods, even when sequences are generated with an insertion and deletion process. These results have implications for multiple sequence alignment as well, since k-mer methods are usually the first step in constructing a guide tree for such algorithms. This is joint work with Elizabeth Allman and John Rhodes.
Rick Durrett : Spatial evolutionary games with weak selection
- Mathematical Biology ( 165 Views )Recently a mathematical theory has been developed for spatial games with weak selection, i.e., the payoff differences between strategies are small. The key to the analysis is that when space an time are suitably rescaled the limit is partial differential equation (PDE). This approach can be used to analyze all 2 x 2 games, but there are a number of 3 x 3 games for which the behavior of the limiting PDE is not known. In this talk we will describe simulation results for two cases that are not considered by rigorous results: rock-paper scissors and bistable games. We will begin by describing results for a two strategy game that arises from studying pancreatic cancer and shows that theoretical predictions work even when selection is not very weak. This is joint work with Mridu Nanda, a student at North Carolina School for Science and Math.
Jacob Scott : Understanding the evolution of resistance: a comprehensive and integrated mathematical and experimental research program.
- Mathematical Biology ( 150 Views )The evolution of resistance remains an elusive problem in the treatment of both cancer and infectious disease, and represents one of the most important medical problems of our time. While the illnesses are different on several non-trivial levels including timescale and complexity, the underlying biological phenomenon is the same: Darwinian evolution. To comprehensively approach these problems, I have focussed my attention on building a broad suite of investigations centered around the causes and consequences of the evolutionary process in these contexts. I will discuss my and my collaborator's efforts to; model the evolutionary process on the genomic scale in both an analytic (Markov process) and stochastic (individual based model and inference) format; to quantify in vitro competition and interaction between cancer cell lines through an evolutionary game theoretic lens using time-lapse microscopy and computer vision; and to understand the evolutionary contingencies inherent in collateral sensitivity in E. coli and ALK mutated non-small cell lung cancer.
Aziz Yakubu : Mathematical Models of Malaria with Applications to Mali and USA
- Mathematical Biology ( 148 Views )In this talk, we will introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during wet season while minimizing the potential harmful effects of drug overdose, we will define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we will provide protocols that lead to small number of first malaria episodes during the wet season than the protocol of Coulibaly et al. In the second part of the talk, we will use our malaria model to "capture" the 2013 Centers of Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the US. Furthermore; we will use our "fitted" malaria models for the top 20 countries of malaria acquisition by US residents to study the impact of protecting US residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the 2013 CDC malaria surveillance data.
Dan Forger : From a model network of 10,000 neurons to a smartphone app with >150,000 users: novel approaches to study daily timekeeping
- Mathematical Biology ( 145 Views )I will briefly describe mathematical models of networks of neurons and chemical reactions within neurons that generate daily (circadian) timekeeping. The numerical and analytical challenges of these models as well as the benefits in terms of biological predications will be highlighted. I will then explain how models can be used to find schedules that decrease the time needed to adjust to a new timezone by a factor of 2 or more. These optimal schedules have been implemented into a smartphone app, ENTRAIN, which collects data from users and in return helps them avoid jet-lag. We will use the data from this app to determine how the world sleeps. This presents a new paradigm in mathematical biology research where large-scale computing bridges the gap between basic mechanisms and human behavior and yields hypotheses that can be rapidly tested using mobile technology.
Phil Holmes : The neural dynamics of decision making: multiple scales in a single brain
- Mathematical Biology ( 141 Views )I will describe a range of models, from the cellular to cortical scales, that illuminate how we perceive stimuli and make decisions. Large networks composed of individual spiking neurons can capture biophysical details of neuromodulation and synaptic transmission, but their complexity renders them opaque to analysis. Employing methods of mean field and dynamical systems theory, I will argue that these high-dimensional stochastic differential equations can be reduced to simple drift-diffusion processes used by cognitive psychologists to fit behavioral data. This allows us to relate them to optimal methods from statistical decision theory, and prompts new questions on why we fail to make good choices.
Joshua Vogelstein : Two-Sample Testing of Non-Euclidean (eg, Graph-Valued) Data via Manifold Learning
- Mathematical Biology ( 140 Views )Two-sample tests are an important class of problems in statistics, with abundant applications ranging from astrophysics to zoology. However, much of the previous art assumes the data samples live in finite dimensional Euclidean space. Here, we consider a foray into two-sample testing when the objects live in a non-Euclidean space, with special emphasis on graph valued observations. Via embedding each graph into Euclidean space, and then learning a manifold along which the reside, we demonstrate the existence of a test such that for a given confidence level alpha, we obtain power > alpha. Simulations and real data applications demonstrate the pragmatic utility of our approach even for very large graphs.
Franziska Michor : Evolutionary dynamics of cancer
- Mathematical Biology ( 135 Views )Cancer emerges due to an evolutionary process in somatic tissue. The fundamental laws of evolution can best be formulated as exact mathematical equations. Therefore, the process of cancer initiation and progression is amenable to mathematical investigation. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a mathematical approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to deduce the temporal sequence of genetic events during tumorigenesis from crosssectional genomic data of tumors at their fully transformed stage. When applied to a dataset of 70 advanced colorectal cancers, our algorithm accurately predicts the sequence of APC, KRAS, and TP53 mutations previously defined by analyzing tumors at different stages of colon cancer formation. We further validate the method with glioblastoma and leukemia sample data and then apply it to complex integrated genomics databases, finding that high-level EGFR amplification appears to be a late event in primary glioblastomas. RESIC represents the first evolutionary mathematical approach to identify the temporal sequence of mutations driving tumorigenesis and may be useful to guide the validation of candidate genes emerging from cancer genome surveys.
Jill Galagher : Targeting the phenotype: Treatment strategies for heterogeneous cancer
- Mathematical Biology ( 133 Views )Targeted cancer drugs attack pathway specific phenotypes and can lead to very positive outcomes when a particular phenotype dominates the population of a specific tumor. However, these drugs often fail because not all cells express the targeted phenotype to the same degree. This leads to a heterogeneous response to treatment, and ultimate recurrence of the cancer as sensitive cells die off and resistant cells take over. We explore how treatment strategies informed by a tumors phenotypic mix, can help slow the emergence of resistance and stave off tumor recurrence. We use an off-lattice agent-based model that incorporates inheritance of two phenotypes proliferation rate and migration speed and is modulated by a space limiting selection force. We find how and when distinct distributions of phenotypes require different treatment strategies.
Anita Layton : Myogenic Response to Systolic Pressure in the Afferent Arteriole
- Mathematical Biology ( 133 Views )Elevations in systolic blood pressure are believed to be closely linked to the pathogenesis and progression of renal diseases. It has been hypothesized that the afferent arteriole (AA) protects the glomerulus from the damaging effects of hypertension by sensing increases in systolic blood pressure and responding with a compensatory vasoconstriction. To investigate this hypothesis, we developed a mathematical model of the myogenic response of an AA smooth muscle cell, based on an arteriole model by Gonzalez-Fernandez and Ermentrout (Math Biosci 1994). renal hemodynamic regulation. The model incorporates ionic transport, cell membrane potential, contraction of the AA smooth muscle cell, and the mechanics of a thick-walled cylinder. The model represents a myogenic response based on a pressure-induced shift in the voltage dependence of calcium channel openings: with increasing transmural pressure, model vessel diameter decreases; and with decreasing pressure, vessel diameter increases. Further, the model myogenic mechanism includes a rate-sensitive component that yields constriction and dilation kinetics similar to behaviors observed in vitro. A parameter set is identified based on physical dimensions of an AA in a rat kidney. Model results suggest that the interaction of Ca2+ and K+ fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively, gives rise to periodicity in the transport of the two ions. This results in a time-periodic cytoplasmic calcium concentration, myosin light chains phosphorylation, and crossbridges formation with the attending muscle stress. Further, the model predicts myogenic responses that agree with experimental observations, most notably those which demonstrate that the renal AA constricts in response to increases in both steady and systolic blood pressures. The myogenic model captures these essential functions of the renal AA, and it may prove useful as a fundamental component in a multi-scale model of the renal microvasculature suitable for investigations of the pathogenesis of hypertensive renal diseases.
Erica Graham : On the Road to Insulin Resistance: Modeling Oxidative Stress-Mediated Dysfunction in Skeletal Muscle
- Mathematical Biology ( 132 Views )Insulin resistance, a major factor in type 2 diabetes development, is a systemic defect characterized by reduced intracellular insulin signaling. Although there are many proposed causes of insulin resistance, the precise mechanisms that influence its long-term progression remain unclear. In this talk, we develop mathematical models to study the hypothesized role of oxidative stress and mitochondrial dysfunction in skeletal muscle insulin resistance. Simulation results suggest that a perfect storm of environmental and genetic factors leading to oxidative stress can confer protection on the individual cell via insulin resistance.
Doron Levy : Modeling the role of the immune response in chronic myelogenous leukemia
- Mathematical Biology ( 130 Views )Tyrosine kinase inhibitors (TKIs), such as imatinib (IM), have significantly improved treatment of chronic myelogenous leukemia (CML). However, the majority of patients are not cured for undetermined reasons. It turns out that many patients who otherwise responded well to IM therapy still show variations in their BCR-ABL transcripts. In this talk we will overview mathematical models for leukemia, drug resistance, and stem cells. Our main focus will be on our recent results concerning mathematical models that integrate CML and an autologous immune response. This is a joint work with G. Clapp, T. Lepoutre, and F. Nicolini.
Marisa Eisenberg : Forecasting and uncertainty in modeling disease dynamics
- Mathematical Biology ( 129 Views )Connecting dynamic models with data to yield predictive results often requires a variety of parameter estimation, identifiability, and uncertainty quantification techniques. These approaches can help to determine what is possible to estimate from a given model and data set, and help guide new data collection. Here, we examine how parameter estimation and disease forecasting are affected when examining disease transmission via multiple types or pathways of transmission. Using examples taken from the West Africa Ebola epidemic, HPV, and cholera, we illustrate some of the potential difficulties in estimating the relative contributions of different transmission pathways, and show how alternative data collection may help resolve this unidentifiability. We also illustrate how even in the presence of large uncertainties in the data and model parameters, it may still be possible to successfully forecast disease dynamics.
Mark Alber : Multi-scale Modeling of Bacterial Swarming
- Mathematical Biology ( 129 Views )The ability of animals to self-organize into remarkable patterns of movement is seen throughout nature from herds of large mammals, to flocks of birds, schools of fish, and swarms of insects. Remarkably, patterns of collective movement can be seen even in the simplest forms of life such as bacteria. M. xanthus are common soil bacteria that are among the most social" bacteria in nature. In this talk clustering mechanism of swarming M. xanthus will be described using combination of experimental movies and stochastic model simulations. Continuous limits of discrete stochastic dynamical systems simulating cell aggregation will be described in the form of reaction-diffusion and nonlinear diffusion equations. Surface motility such as swarming is thought to precede biofilm formation during infection. Population of bacteria P. aeruginosa, major infection in hospitals, will be shown to efficiently propagate as high density waves that move symmetrically as rings within swarms towards the extending tendrils. Multi-scale model simulations suggest a mechanism of wave propagation as well as branched tendril formation at the edge of the population that depend upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. This collective mechanism of cell- cell coordination was recently shown to moderate swarming direction of individual bacteria to avoid a toxic environment. In the last part of the talk a three-dimensional multiscale modeling approach will be described for studying fluidviscoelastic cell interaction during blood clot formation.