## Sharon Lubkin : Notochord eccentricity and its relation to cell packing

- Mathematical Biology ( 252 Views )The notochord, the defining feature of chordates, is a pressurized tube which actuates elongation of the chordate embryo. The zebrafish notochord consists of large vacuolated cells surrounded by a thin sheath. We characterized the patterns of the cellsâ?? packing, and their relationship to the known regular patterns from the study of foams, and irregular patterns in a gel bead system. Disruption of the wild type packing pattern leads to developmental defects. We characterize the bifurcations between the relevant regular patterns in terms of nondimensional geometrical and mechanical ratios, and suggest an important developmental role for the eccentric "staircase" pattern.

## Laura Miller : How jellyfish can inspire mathematics: A case study of the feeding currents generated by upside-down jellyfish

- Mathematical Biology ( 223 Views )The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In this presentation, we develop and test mathematical models describing the pulsing dynamics and the resulting fluid flow generated by the upside down jellyfish, Cassiopea. The kinematics of contraction and distributions of pulse frequencies were obtained from videos and used as inputs into numerical simulations. Particle image velocimetry was used to obtain spatially and temporally resolved flow fields experimentally. The immersed boundary method was then used to solve the fluid-structure interaction problem and explore how changes in morphology and pulsing dynamics alter the resulting fluid flow. Unlike pelagic (swimming) jellyfish, there is no evidence of the formation of a train of vortex rings. Instead, significant mixing occurs around and directly above the oral arms and secondary mouths. We found good agreement between the numerical simulations and experiments, suggesting that the presence of porous oral arms induce net horizontal flow towards the bell and mixing.

## Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers

- Mathematical Biology ( 219 Views )Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatmentâ??naÃ¯ve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.

## Andrew Brouwer : Harnessing environmental surveillance: mathematical modeling in the fight against polio

- Mathematical Biology ( 213 Views )Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013-14, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. However, we have lacked the theory to translate environmental surveillance into public health metrics; it is a priori unclear how much environmental surveillance can even say about population-level disease dynamics. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used differential algebra and profile likelihood techniques to perform identifiability analysis, that is, to assess how much information exists in the data for the model, and to quantify inference uncertainty. From the environmental surveillance data, we estimated the epidemic curve and transmission dynamics, determining that the outbreak likely happened much faster than previously thought. Our mathematical modeling approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.

## Jeremy Gunawardena : The Hopfield Barrier in eukaryotic gene regulation

- Mathematical Biology ( 201 Views )John Hopfield pointed out, in his seminal paper on kinetic proofreading, that if a biochemical system operates at thermodynamic equilibrium there is a barrier to how well it can achieve high-fidelity in transcription and translation. Hopfield showed that the only way to bypass this barrier is to dissipate energy and maintain the system away from equilibrium. Eukaryotic gene regulation uses dissipative mechanisms, such as nucleosome remodelling, DNA methylation and post-translational modification of histones, which are known to play a critical regulatory role but have been largely ignored in quantitative treatments. I will describe joint work with my colleague Angela DePace in which we use the recently-developed, graph-theoretic Â?linear frameworkÂ? to show that the sharpness with which a gene is turned Â?onÂ? or Â?offÂ? in response to an upstream transcription factor is limited if the regulatory system operates at equilibrium, even with arbitrary degrees of higher-order cooperativity. In contrast, if the regulatory system is maintained away from equilibrium, substantially higher degrees of sharpness can be achieved. We suggest that achieving sharpness in gene regulation exhibits a Hopfield Barrier, and uncover, along the way, a new interpretation for the ubiquitously used, but poorly justified, Hill function.

## Cristan Tomasetti : Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention

- Mathematical Biology ( 193 Views )Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations.

## Elliot Cartee : Control-Theoretic Models of Environmental Crime

- Mathematical Biology ( 188 Views )We present two models of perpetrators' decision-making in extracting resources from a protected area. It is assumed that the authorities conduct surveillance to counter the extraction activities, and that perpetrators choose their post-extraction paths to balance the time/hardship of travel against the expected losses from a possible detection. In our first model, the authorities are assumed to use ground patrols and the protected resources are confiscated as soon as the extractor is observed with them. The perpetrators' path-planning is modeled using the optimal control of randomly-terminated process. In our second model, the authorities use aerial patrols, with the apprehension of perpetrators and confiscation of resources delayed until their exit from the protected area. In this case the path-planning is based on multi-objective dynamic programming. Our efficient numerical methods are illustrated on several examples with complicated geometry and terrain of protected areas, non-uniform distribution of protected resources, and spatially non-uniform detection rates due to aerial or ground patrols.

## David Basanta : The ecology of cancer: mathematical modelling and clinical implications

- Mathematical Biology ( 179 Views )Decades of research in cancer have yielded scant results other than highlighting the need for new approaches that could go beyond the tried and tested molecular-based ones. Recent clinical studies show that tumour heterogeneity and selection, the ingredients of Darwinian evolution, can explain cancer progression towards malignancy as well as recurrence after treatment. In this talk I will describe mathematical and computational models that explore cancer evolutionary dynamics and that can explain how the interactions between the tumour with its environment (the tumour ecosystem) can yield a better understanding of cancer biology and lead to better and more efficacious treatments for cancer patients.

## Stanca Ciupe : Models of antibody responses in HIV

- Mathematical Biology ( 174 Views )One of the first immunologic responses against HIV infection is the presence of neutralizing antibodies that seem able to inactivate several HIV strains. Moreover, in vitro studies have shown the existence of monoclonal antibodies that exhibit broad crossclade neutralizing potential. Yet their number is low and slow to develop in vivo. In this paper, we investigate the potential benefits of inducing poly-specific neutralizing antibodies in vivo throughout immunization. We develop a mathematical model that considers the activation of families of B lymphocytes producing poly-specific and strain-specific antibodies and use it to demonstrate that, even if such families are successful in producing neutralizing antibodies, competition between them may limit the poly-specific response allowing the virus to escape. We modify this model to account for viral evolution under the pressure of antibody responses in natural HIV infection as well as the need to neutralize more than one viral spike. The model can reproduce viral escape under certain conditions of B lymphocyte competition. Using these models we provide explanations for the observed antibody failure in controlling natural infection and predict quantitative measures that need to be satisfied for long-term control of HIV infection.

## Seth Sullivant : Statistically-Consistent k-mer Methods for Phylogenetic Tree Reconstruction

- Mathematical Biology ( 166 Views )Frequencies of k-mers in sequences are sometimes used as a basis for inferring phylogenetic trees without first obtaining a multiple sequence alignment. We show that a standard approach of using the squared-Euclidean distance between k-mer vectors to approximate a tree metric can be statistically inconsistent. To remedy this, we derive model-based distance corrections for orthologous sequences without gaps, which lead to consistent tree inference. The identifiability of model parameters from k-mer frequencies is also studied. Finally, we report simulations showing the corrected distance out-performs many other k-mer methods, even when sequences are generated with an insertion and deletion process. These results have implications for multiple sequence alignment as well, since k-mer methods are usually the first step in constructing a guide tree for such algorithms. This is joint work with Elizabeth Allman and John Rhodes.

## Rick Durrett : Spatial evolutionary games with weak selection

- Mathematical Biology ( 165 Views )Recently a mathematical theory has been developed for spatial games with weak selection, i.e., the payoff differences between strategies are small. The key to the analysis is that when space an time are suitably rescaled the limit is partial differential equation (PDE). This approach can be used to analyze all 2 x 2 games, but there are a number of 3 x 3 games for which the behavior of the limiting PDE is not known. In this talk we will describe simulation results for two cases that are not considered by rigorous results: rock-paper scissors and bistable games. We will begin by describing results for a two strategy game that arises from studying pancreatic cancer and shows that theoretical predictions work even when selection is not very weak. This is joint work with Mridu Nanda, a student at North Carolina School for Science and Math.

## Michael Mackey : Understanding, treating and avoiding hematological disease

- Mathematical Biology ( 158 Views )This talk will trace many years of work mathematical modeling hematological diseases. The Â?understandÂ? part talks about the use of mathematical to figure out what causes cyclical neutropenia, and the Â?treatÂ? part refers to work on treating cyclical neutropenia using recombinant cytokines. The Â?avoidÂ? part deals with current ongoing work trying to obviate the deleterious effects of chemotherapy on blood cell productionÂ?one of the major negative side effects of chemotherapy.

## Nick Moore : How focused flexibility maximizes the thrust production of flapping wings

- Mathematical Biology ( 154 Views )Birds, insects, and fish all exploit the fact that flexible wings or fins generally perform better than their rigid counterparts. Given the task of designing an optimal wing, though, it is not clear how to best distribute the flexibility: Should the wing be uniformly flexible along its length, or could some advantage be gained by making certain sections more rigid than others? I will discuss this question by using a 2D small-amplitude model for the fluid-structure interaction combined with an efficient Chebyshev PDE solver. Numerical optimization shows that concentrating flexibility near the leading edge of the wing maximizes thrust production, an arrangement that resembles the torsional-joint flexibility mechanism found in insect wings. I will discuss the possibility of extending into three dimensions to address the question of optimal wing architecture more generally.

## Jim Nolen : Sticky limit theorems for statistics in singular spaces.

- Mathematical Biology ( 147 Views )This talk is about extending classical limit theorems of probability (law of large numbers, central limit theorem) to a non-Euclidean setting. I'll talk about new and interesting phenomena observed when sampling independent points from certain singular geometric spaces. The main result is a limit theorem -- the "sticky central limit theorem" -- which applies to the mean or barycenter of a family of independent samples as the number of samples grows. The theorem shows that the geometry of the underlying space may have an interesting effect on the asymptotic fluctuations of the sample means, in a way that does not occur with independent samples in Euclidean space. One motivation for thinking about statistics in singular geometric spaces comes from evolutionary biology; one can consider phylogenetic trees as points in a metric space of the sort discussed in this talk. Apart from this basic motivation, however, the talk will have little biological content and will be mainly about probability.

## Dan Forger : From a model network of 10,000 neurons to a smartphone app with >150,000 users: novel approaches to study daily timekeeping

- Mathematical Biology ( 145 Views )I will briefly describe mathematical models of networks of neurons and chemical reactions within neurons that generate daily (circadian) timekeeping. The numerical and analytical challenges of these models as well as the benefits in terms of biological predications will be highlighted. I will then explain how models can be used to find schedules that decrease the time needed to adjust to a new timezone by a factor of 2 or more. These optimal schedules have been implemented into a smartphone app, ENTRAIN, which collects data from users and in return helps them avoid jet-lag. We will use the data from this app to determine how the world sleeps. This presents a new paradigm in mathematical biology research where large-scale computing bridges the gap between basic mechanisms and human behavior and yields hypotheses that can be rapidly tested using mobile technology.

## Rick Durrett : Branching Process Models of Cancer

- Mathematical Biology ( 145 Views )It is common to use a multitype branching process to model the accumulation of mutations that leads to cancer progression, metastasis, and resistance to treatment. In this talk I will describe results about the time until the first type k (cell with k mutations) and the growth of the type k population obtained in joint work with Stephen Moseley, and their use in evaluating possible screening strategies for ovarian cancer, work in progress with Duke undergraduate Kaveh Danesh. The point process representation of the limit, which is a one-sided stable law, together with results from 10-60 years ago leads to remarkable explicit formulas for Simpson's index and the size of the largest clone. These results are important in understanding tumor diversity which can present serious obstacles to treatment. The last topic is joint work with Jasmine Foo, Kevin Leder, John Mayberry, and Franziska Michor

## Steven Baer : Multiscale Modeling of Neural Subcircuits and Feedback Mechanisms in the Outer Plexiform Layer of the Retina

- Mathematical Biology ( 143 Views )Visual processing begins in the outer plexiform layer of the retina, where

bipolar, horizontal, and photoreceptor cells interact. In vertebrates, the

onset of dim backgrounds can enhance small spot flicker responses of

retinal horizontal cells. This flicker response is called background-

induced flicker enhancement. The underlying mechanism for the feedback

is unclear but competing hypotheses have been proposed. One is the GABA

hypothesis, which states that the inhibitory neurotransmitter GABA,

released from horizontal cells, mediates the feedback by blocking calcium

channels. Another is the ephaptic hypothesis, which contends that calcium

entry is regulated by changes in the electrical potential within the

intersynaptic space between cones and horizontal cells. In this study, a

continuum spine model of cone-horizontal cell synaptic circuitry is

formulated. The model captures two spatial scales - the scale of an

individual synapse and the scale of the receptive field involving hundreds

to thousands of synapses. We show that the ephaptic mechanism produces

reasonable qualitative agreement with the temporal dynamics exhibited by

flicker enhancement experiments. We find that although GABA produces

enhancement, this mechanism alone is insufficient to reproduce the

experimental results. We view this multiscale continuum approach as a

first step in formulating a multi-layer mathematical model of retinal

circuitry, which would include the other Â?brain nucleiÂ? within the retina:

the inner plexiform layer where bipolar, amacrine, interplexiform, and

ganglion cells interact.

## Mainak Patel : Temporal Binding Emerges as a Rapid and Accurate Encoding Tool Within a Network Model of the Locust Antennal Lobe

- Mathematical Biology ( 143 Views )The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor produces a stimulus-specific temporal progression of neuronal spiking, inspiring the hypothesis that the AL encodes odors through dynamically evolving ensembles of active cells. Such a coding strategy, however, requires higher olfactory centers to integrate a prolonged dynamic profile of AL signals prior to stimulus assessment, a process that is likely to be slow and inconsistent with the generation of quick behavioral responses. Our modeling work has led us to propose an alternate hypothesis: the dynamical interplay of fast and slow inhibition within the locust AL induces transient correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code and allowing rapid stimulus detection by downstream elements.

## Jake Taylor-King : Generalized Jump Processes and Osteocyte Network Formation

- Mathematical Biology ( 141 Views )My talk will have two parts. PART I, From Birds to Bacteria: Generalised Velocity Jump Processes. There are various cases of animal movement where behaviour broadly switches between two modes of operation, corresponding to a long distance movement state and a resting or local movement state. In this talk, I will give a mathematical description of this process, adapted from Friedrich et. al. (2006). The approach allows the specification any running or waiting time distribution along with any angular and speed distributions. The resulting system of partial integro-differential equations are tumultuous and therefore it is necessary to both simplify and derive summary statistics. We derive an expression for the mean squared displacement, which shows good agreement with experimental data from the bacterium Escherichia coli and the gull Larus fuscus. Finally a large time diffusive approximation is considered via a Cattaneo approximation (Hillen, 2004). This leads to the novel result that the effective diffusion constant is dependent on the mean and variance of the running time distribution but only on the mean of the waiting time distribution. We also consider the Levy regime where the variance of the running distribution tends to infinity. This leads to a fractional diffusion equation for superdiffusive Levy walks and can be solved analytically. Our theory opens up new perspectives both for the systematic derivation of such equations, and for experimental data analysis of intermittent motion. I will also briefly discuss recent developments (by other researchers) within the field of velocity jump processes. PART II: Modelling Osteocyte Network Formation: Healthy and Cancerous Environments. Advanced prostate, breast, and lung cancer can metastasize to bone. In pathological bone, the highly regulated bone remodeling signaling pathway is disrupted. Within bone dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone formation. In the presence of a cancerous microenvironment, the morphology of this network changes. Commonly osteocytes appear to be either overdifferentiated (i.e., there are more dendrites) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, preliminary studies measuring the number of osteocytes per unit area using pathology slides show that the number density of osteocytes change from healthy to metastatic prostate and breast cancer xenografted mice. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and number density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We consider variations of our model to test specific physiological hypotheses related to osteoblast differentiation; for example we can predict how changing measurable biological parameters, such as rates of bone secretion, rates of dendrite growth and rates of osteoblast differentiation can allow for qualitatively different network morphologies, and vice versa. We thenuse our model to hypothesize reasons for the limited efficacy of zoledronate therapy on metastatic breast cancer.

## Joshua Vogelstein : Two-Sample Testing of Non-Euclidean (eg, Graph-Valued) Data via Manifold Learning

- Mathematical Biology ( 140 Views )Two-sample tests are an important class of problems in statistics, with abundant applications ranging from astrophysics to zoology. However, much of the previous art assumes the data samples live in finite dimensional Euclidean space. Here, we consider a foray into two-sample testing when the objects live in a non-Euclidean space, with special emphasis on graph valued observations. Via embedding each graph into Euclidean space, and then learning a manifold along which the reside, we demonstrate the existence of a test such that for a given confidence level alpha, we obtain power > alpha. Simulations and real data applications demonstrate the pragmatic utility of our approach even for very large graphs.

## Hans Othmer : A hybrid model of tumor-stromal interactions in breast cancer

- Mathematical Biology ( 139 Views )Ductal carcinoma in situ (DCIS) is an early stage non-invasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. We will discuss a mathematical model that incorporates the cross-talk between stromal and tumor cells, and which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-$\beta$ signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation, and describe a hybrid model for the interaction of cells with the tumor microenvironment. The analysis sheds light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggests how epigenetic changes in transformed cells affect tumor progression.

## L. Ridgway Scott : Digital biology: protein-ligand interactions

- Mathematical Biology ( 137 Views )The digital nature of biology is crucial to its functioning as an information system, as well in building hierarchical components in a repeatable way. We explain how protein systems can function as discrete components, despite the importance of non-specific forces due to the hydrophobic effect. That is, we address the question of why proteins bind to ligands predictably and not in a continuous distribution of places, the way grease forms into blobs. We will give a detailed description of how data mining in the PDB can reveal how proteins interact. We highlight the role of the hydrophobic effect, but we see that it works inversely to the usual concept of hydrophobic interaction. Our work suggests the need for a more accurate model of the dielectric effect in the vicinity of a protein surface, and we discuss some advances in this direction. Our research also provides an understanding of how molecular recognition and signaling can evolve. We give an example of the use of our ideas in drug design.

## Franziska Michor : Evolutionary dynamics of cancer

- Mathematical Biology ( 135 Views )Cancer emerges due to an evolutionary process in somatic tissue. The fundamental laws of evolution can best be formulated as exact mathematical equations. Therefore, the process of cancer initiation and progression is amenable to mathematical investigation. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and represent promising targets for therapeutic intervention. Here we describe a mathematical approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to deduce the temporal sequence of genetic events during tumorigenesis from crosssectional genomic data of tumors at their fully transformed stage. When applied to a dataset of 70 advanced colorectal cancers, our algorithm accurately predicts the sequence of APC, KRAS, and TP53 mutations previously defined by analyzing tumors at different stages of colon cancer formation. We further validate the method with glioblastoma and leukemia sample data and then apply it to complex integrated genomics databases, finding that high-level EGFR amplification appears to be a late event in primary glioblastomas. RESIC represents the first evolutionary mathematical approach to identify the temporal sequence of mutations driving tumorigenesis and may be useful to guide the validation of candidate genes emerging from cancer genome surveys.

## Jean Clairambault : Drug resistance in cancer: biological and medical issues, and continuous models of structured population dynamics

- Mathematical Biology ( 134 Views )Considering cancer as an evolutionary disease, we aim at understanding the means by which cancer cell populations develop resistance mechanisms to drug therapies, in order to circumvent them by using optimised therapeutic combinations. Rather than focusing on molecular mechanisms such as overexpression of intracellular drug processing enzymes or ABC transporters that are responsible for resistance at the individual cell level, we propose to introduce abstract phenotypes of resistance structuring cancer cell populations. The models we propose rely on continuous adaptive dynamics of cell populations, and are amenable to predict asymptotic evolution of these populations with respect to the phenotypic traits of interest. Drug-induced drug resistance, the question we are tackling from a theoretical and experimental point of view, may be due to biological mechanisms of different natures, mere local regulation, epigenetic modifications (reversible, nevertheless inheritable) or genetic mutations (irreversible), according to the extent to which the genome of the cells in the population is affected. In this respect, the models we develop are more likely to be biologically corresponding to epigenetic modifications, although eventual induction of emergent resistant cell clones due to mutations under drug pressure is not to be completely excluded. From the biologist's point of view, we study phenotypically heterogeneous, but genetically homogeneous, cancer cell populations under stress by drugs. According to the cell populations at stake and to the exerted drug pressure, is drug resistance in cancer a permanently acquired phenotypic trait or is it reversible? Can it be avoided or overcome by rationally (model-guided) designed combinations of drugs? These are some of the questions we will try to answer in a collaboration between a team of mathematicians and another one of biologists, both dealing with cancer and Darwinian - possibly also Lamarckian - evolution of cell populations.

## Jill Galagher : Targeting the phenotype: Treatment strategies for heterogeneous cancer

- Mathematical Biology ( 133 Views )Targeted cancer drugs attack pathway specific phenotypes and can lead to very positive outcomes when a particular phenotype dominates the population of a specific tumor. However, these drugs often fail because not all cells express the targeted phenotype to the same degree. This leads to a heterogeneous response to treatment, and ultimate recurrence of the cancer as sensitive cells die off and resistant cells take over. We explore how treatment strategies informed by a tumorÂ?s phenotypic mix, can help slow the emergence of resistance and stave off tumor recurrence. We use an off-lattice agent-based model that incorporates inheritance of two phenotypes Â? proliferation rate and migration speed Â? and is modulated by a space limiting selection force. We find how and when distinct distributions of phenotypes require different treatment strategies.

## Anita Layton : Myogenic Response to Systolic Pressure in the Afferent Arteriole

- Mathematical Biology ( 133 Views )Elevations in systolic blood pressure are believed to be closely linked to the pathogenesis and progression of renal diseases. It has been hypothesized that the afferent arteriole (AA) protects the glomerulus from the damaging effects of hypertension by sensing increases in systolic blood pressure and responding with a compensatory vasoconstriction. To investigate this hypothesis, we developed a mathematical model of the myogenic response of an AA smooth muscle cell, based on an arteriole model by Gonzalez-Fernandez and Ermentrout (Math Biosci 1994). renal hemodynamic regulation. The model incorporates ionic transport, cell membrane potential, contraction of the AA smooth muscle cell, and the mechanics of a thick-walled cylinder. The model represents a myogenic response based on a pressure-induced shift in the voltage dependence of calcium channel openings: with increasing transmural pressure, model vessel diameter decreases; and with decreasing pressure, vessel diameter increases. Further, the model myogenic mechanism includes a rate-sensitive component that yields constriction and dilation kinetics similar to behaviors observed in vitro. A parameter set is identified based on physical dimensions of an AA in a rat kidney. Model results suggest that the interaction of Ca2+ and K+ fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively, gives rise to periodicity in the transport of the two ions. This results in a time-periodic cytoplasmic calcium concentration, myosin light chains phosphorylation, and crossbridges formation with the attending muscle stress. Further, the model predicts myogenic responses that agree with experimental observations, most notably those which demonstrate that the renal AA constricts in response to increases in both steady and systolic blood pressures. The myogenic model captures these essential functions of the renal AA, and it may prove useful as a fundamental component in a multi-scale model of the renal microvasculature suitable for investigations of the pathogenesis of hypertensive renal diseases.

## Guillaume Lajoie : Artificially-induced synaptic plasticity in motor cortex: a theoretical model of a bidirectional brain-computer interface

- Mathematical Biology ( 132 Views )Experiments on macaque monkeys show that spike-triggered stimulation performed by a Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen synaptic connections between distant neural sites in Motor Cortex (MC) and even between MC and spinal cord, with changes that last several days. Here, a neural implant records from some neurons in MC and electrically stimulates others after set delays. The working hypothesis is that this stimulation procedure, which interacts with the very fast spiking activity of cortical circuits (on the order of milliseconds), induces changes mediated by synaptic plasticity mechanisms on much longer timescales (hours and days). The field of online, closed-loop BBCI's is rapidly evolving, with applications ranging from a science-oriented tool to clinical treatments of motor injuries. However, with the enhanced capability of novel devices that can record and stimulate an ever-growing number of neural sites comes growing complexity. It is therefore crucial to develop a theoretical understanding of the effects of closed-loop artificial stimulation in the highly recurrent neural circuits found in cortex, and how such protocols affect functional cotex-to-muscle mappings across a range of timescales. In parallel with ongoing experiments, we are developing a mathematical model of recurrent MC networks with probabilistic spiking mechanisms and spike-time-dependent plastic synapses (STDP) capable of capturing both neural and synaptic activity statistics relevant to BBCI protocols. This model successfully reproduces key experimental results and we use analytical derivations to predict optimal operational regimes for BBCIs. We make experimental predictions concerning the efficacy of spike-triggered stimulation in different regimes of cortical activity such as awake behaving states or sleep. Importantly, this work provides a first step toward a theoretical framework aimed at the design and development of next-generations applications of BBCI's.

## Marisa Eisenberg : Forecasting and uncertainty in modeling disease dynamics

- Mathematical Biology ( 129 Views )Connecting dynamic models with data to yield predictive results often requires a variety of parameter estimation, identifiability, and uncertainty quantification techniques. These approaches can help to determine what is possible to estimate from a given model and data set, and help guide new data collection. Here, we examine how parameter estimation and disease forecasting are affected when examining disease transmission via multiple types or pathways of transmission. Using examples taken from the West Africa Ebola epidemic, HPV, and cholera, we illustrate some of the potential difficulties in estimating the relative contributions of different transmission pathways, and show how alternative data collection may help resolve this unidentifiability. We also illustrate how even in the presence of large uncertainties in the data and model parameters, it may still be possible to successfully forecast disease dynamics.