Quicklists
public 01:29:57

Jim Keener : Mechanisms of length regulation of flagella in Salmonella

  -   Mathematical Biology ( 120 Views )

Abstract: The construction of flagellar motors in motile bacteria such as Salmonella is a carefully regulated genetic process. Among the structures that are built are the hook and the filament. The length of the hook is tightly controlled while the length of filaments is less so. However, if a filament is broken off it will regrow, while a broken hook will not regrow. The question that will be addressed in this talk is how Salmonella detects and regulates the length of these structures. This is related to the more general question of how physical properties (such as size or length) can be detected by chemical signals and what those mechanisms are. In this talk, I will present mathematical models for the regulation of hook and filament length. The model for hook length regulation is based on the hypothesis that the hook length is determined by the rate of secretion of the length regulatory molecule FliK and a cleavage reaction with the gatekeeper molecule FlhB. A stochastic model for this interaction is built and analyzed, showing excellent agreement with hook length data. The model for filament length regulation is based on the hypothesis that the growth of filaments is diffusion limited and is measured by negative feedback involving the regulatory protein FlgM. Thus, the model includes diffusion on a one-dimensional domain with a moving boundary, coupled with a negative feedback chemical network. The model shows excellent qualitative agreement with data, although there are some interesting unresolved issues related to the quantitative results.

public 01:34:20

Tom Witelski : The fluid dynamics of blinking

  -   Mathematical Biology ( 114 Views )

public 01:34:48

Samuel Friedman : Using MultiCellDS and digital cell lines to initialize large-scale 3-D agent-based cancer simulations (up to 0.5M cells)

  -   Mathematical Biology ( 110 Views )

Understanding and predicting cancer progression requires detailed interacting models of tumor and stromal cells, all calibrated to experimental data. Work to date has been limited by a lack of standardization of data representations of multicellular systems, though this is now being addressed through MultiCellDS (MultiCellular Data Standard) and digital cell lines, which are standardized representations of microenvironment-dependent cell phenotypes. Computational cancer modelers require biologically and mathematically consistent initialization routines to seed simulations with cells defined in digital cell lines. In this talk, we will briefly introduce a 3-D agent-based model designed for use in integrative computational biology. We introduce a ?snapshot generator? that can take a digital cancer cell line and produce for the agent-based model an initial cell arrangement and a phenotypic state based upon analyses of the digital cell line data elements. We demonstrate 2-D monolayer and 3-D hanging drop simulations up to 500k MCF7 cells, a common breast cancer cell line. We additionally demonstrate the production of digital snapshots, standardized simulation output that will facilitate computational model comparison with a common core of analytical tools. With an early version of these tools, we assess the match between simulations and in vitro experiments. In the future, this work will be used to create and simulate combinations of tumor and stromal cells from appropriate digital cell lines in realistic tissue environments in order to understand, predict, and eventually control cancer progression in individual patients.

public 01:14:42

Sandy Anderson : Hijacking Homeostatsis: How Heterogeneity Drives Tumor Progression and Treatment Failure

  -   Mathematical Biology ( 107 Views )

Heterogeneity in cancer is an observed fact, both genotypically and phenotypically. Cell-cell variation is seen in almost all aspects of cancer from early development all the way through to invasion and subsequent metastasis. Our current understanding of this heterogeneity has mainly focused at the genetic scale with little information on how this variation translates to actual changes in cell phenotypic behavior. Given that many genotypes can lead to the same cellular phenotype, it is important that we quantify the range and scope of this heterogeneity at the phenotypic scale as ultimately this variability will dictate the aggressiveness of the tumor and its treatability. Central to our understanding of this heterogeneity is how the tumor cells interact with each other and with their microenvironment. Since it is these very interactions that drive selection and that ultimately define the ecology of the tissue in which the tumor is developing. Considering an organ as an ecological system, means that we should view normal tissue homeostasis as an equilibrium that cancer cells must disrupt if they are to be successful. Disruption of this equilibrium is often one of the first events in cancer development, as the normal control mechanisms of the tissue are damaged or ignored. We will discuss the interplay between homeostasis, heterogeneity, evolution and ecology in cancer progression and treatment failure with an emphasis on the metabolism of breast cancer.