Quicklists
public 01:34:59

Andrew Brouwer : Harnessing environmental surveillance: mathematical modeling in the fight against polio

  -   Mathematical Biology ( 213 Views )

Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013-14, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. However, we have lacked the theory to translate environmental surveillance into public health metrics; it is a priori unclear how much environmental surveillance can even say about population-level disease dynamics. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used differential algebra and profile likelihood techniques to perform identifiability analysis, that is, to assess how much information exists in the data for the model, and to quantify inference uncertainty. From the environmental surveillance data, we estimated the epidemic curve and transmission dynamics, determining that the outbreak likely happened much faster than previously thought. Our mathematical modeling approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.

public 01:34:46

Gregory Herschlag : Optimal reservoir conditions for material extraction across pumping and porous channels

  -   Mathematical Biology ( 127 Views )

In this talk, I will discuss a new result in fluid flows through channels with permeable membranes with simple pumping dynamics. Fluid will be exchanged and metabolized in a simple reservoir and I will demonstrate the existence of optimal reservoir properties that may either maximize or minimized the amount of fluid being extracted across the channel walls. The biological relevance of this work may be seen by noting that all living organisms of a sufficient size rely on complex systems of tubular networks to efficiently collect, transport and distribute nutrients or waste. These networks exchange material with the interstitium via embedded channels leading to effective permeabilities across the wall separating the channel interior from the interstitium. In many invertebrates, for example, respiratory systems are made of complex tracheal systems that branch out through the entire body allowing for passive exchange of oxygen and carbon dioxide. In many of these systems, certain animals utilize various pumping mechanisms that alter the flow of the air or fluid being transported. Although the net effect of pumping of the averaged rates of fluid flow through the channel is typically well understood, it is still a largely open problem to understand how, and in what circumstances, pumping enables and enhances the exchange of material across channel walls. It has been demonstrated experimentally, for example, that when certain insects flap their wings, compression of the trachea allow for more efficient oxygen extraction, however it is unclear if this pumping is optimized for flight, oxygen uptake or neither, and understanding this problem quantitatively will shed insight on this biological process. Many of these interesting scenarios occur at low Reynolds number and this regime will be the focus of the presentation.

public 01:29:51

Karin Leiderman : Mathematical Modeling of Thrombosis

  -   Mathematical Biology ( 121 Views )

public 01:29:57

Jim Keener : Mechanisms of length regulation of flagella in Salmonella

  -   Mathematical Biology ( 120 Views )

Abstract: The construction of flagellar motors in motile bacteria such as Salmonella is a carefully regulated genetic process. Among the structures that are built are the hook and the filament. The length of the hook is tightly controlled while the length of filaments is less so. However, if a filament is broken off it will regrow, while a broken hook will not regrow. The question that will be addressed in this talk is how Salmonella detects and regulates the length of these structures. This is related to the more general question of how physical properties (such as size or length) can be detected by chemical signals and what those mechanisms are. In this talk, I will present mathematical models for the regulation of hook and filament length. The model for hook length regulation is based on the hypothesis that the hook length is determined by the rate of secretion of the length regulatory molecule FliK and a cleavage reaction with the gatekeeper molecule FlhB. A stochastic model for this interaction is built and analyzed, showing excellent agreement with hook length data. The model for filament length regulation is based on the hypothesis that the growth of filaments is diffusion limited and is measured by negative feedback involving the regulatory protein FlgM. Thus, the model includes diffusion on a one-dimensional domain with a moving boundary, coupled with a negative feedback chemical network. The model shows excellent qualitative agreement with data, although there are some interesting unresolved issues related to the quantitative results.

public 01:34:46

Friday is the start of spring break : no talk

  -   Mathematical Biology ( 115 Views )

public 01:14:42

Harsh Jain : A delay differential equation model of cancer chemotherapy, with applications to ovarian carcinoma treatment

  -   Mathematical Biology ( 114 Views )

The use of delay differential equations (DDEs) to study biological phenomena has a long history, when the rate of change of model variables depends their previous history. Today, DDEs occupy a central place in models of infectious disease dynamics, epidemiology, ecology and tumor growth. In this talk, I will present a delayed partial differential equation (PDE) model of tumor growth and treatment. The model accounts for cell cycle arrest and cell death induced by chemotherapy, and explicitly includes intracellular signaling pathways relevant to drug action. The model is simplified to give a 1D hyperbolic PDE, which is further reduced to a nonlinear, non-autonomous DDE by projecting along characteristics. Necessary and sufficient conditions for the global stability of the cancer-free equilibrium are derived and conditions under which the system evolves to periodic solutions are determined. This has clinical implications since it leads to a lower bound for the amount of therapy required to affect a cure. Finally, I will present a clinical application of the model, by applying it to the treatment of ovarian cancers. Two types of drugs are considered – platinum-based chemotherapeutic agents that are the current standard of care for most solid tumors, and small molecule cell death inducers that are currently under development. The model is calibrated versus in vitro experimental results, and is then used to predict optimal doses and administration time scheduling for the treatment of a tumor growing in vivo.

public 01:14:48

Laura Miller : The fluid dynamics of jellyfish swimming and feeding

  -   Mathematical Biology ( 110 Views )

The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In this presentation, we develop and test mathematical models describing the pulsing dynamics and the resulting fluid flow generated by the benthic upside down jellyfish, Cassiopea spp., and the pelagic moon jellyfish, Aurelia spp. The kinematics of contraction and distributions of pulse frequencies were obtained from videos and used as inputs into numerical simulations. Particle image velocimetry was used to obtain spatially and temporally resolved flow fields experimentally. The immersed boundary method was then used to solve the fluid-structure interaction problem and explore how changes in morphology and pulsing dynamics alter the resulting fluid flow. For Cassiopea, significant mixing occurs around and directly above the oral arms and secondary mouths. We found good agreement between the numerical simulations and experiments, suggesting that the presence of porous oral arms induce net horizontal flow towards the bell and mixing. For Aurelia, maximum swim speeds are generated when the elastic bell is resonating at its natural frequency. Alternating vortex rings can also enhance swimming speed and efficiency.

public 01:29:49

Anette Hosoi : Small Swimming Lessons: Optimizing Low Reynolds Number Locomotion

  -   Mathematical Biology ( 98 Views )

ABSTRACT: The past decade has seen a number of engineering innovations that make construction of devices of micro- and even nanometric dimensions feasible. Hence, there is a growing interest in exploring new and efficient ways to generate propulsion at these small scales. Here we explore optimization of one particular type of low Reynolds number propulsion mechanism – flagella. Beyond the general challenges associated with optimization, there are a number of issues that are unique to swimming at low Reynolds numbers. At small scales, the fluid equations of motion are linear and time-reversible, hence reciprocal motion – i.e., strokes that are symmetric with respect to time reversal – cannot generate any net translation (a limitation commonly referred to as the Scallop Theorem). One possible way to break this symmetry is through carefully chosen morphologies and kinematics. One symmetry-breaking solution commonly employed by eukaryotic microorganisms is to select nonreciprocal stroke patterns by actively generating torques at fixed intervals along the organism. Hence, we will address the question: For a given morphology, what are the optimal kinematics? In this talk we present optimal stroke patterns using biologically inspired geometries such as single-tailed spermatozoa and the double-tail morphology of Chlamydomonas, a genus of green alga widely considered to be a model system in molecular biology.

public 01:34:46

Spring Break : no talk

  -   Mathematical Biology ( 86 Views )