## John Gemmer : Nature??s Forms are Frilly, Flexible and Functional

- Mathematical Biology ( 259 Views )Many patterns in Nature and industry arise from the system minimizing an appropriate energy. Torn plastic sheets and growing leaves provide striking examples of pattern forming systems which can transition from single wavelength geometries (leaves) to complex fractal-like shapes (lettuce). These fractal-like patterns seem to have many length scales, i.e. the same amount of extra detail can be seen when looking closer (??statistical self-similarity?). It is a mystery how such complex patterns could arise from energy minimization alone. In this talk I will address this puzzle by showing that such patterns naturally arise from the sheet adopting a hyperbolic non-Euclidean geometry. However, there are many different hyperbolic geometries that the growing leaf could select. I will show using techniques from analysis, differential geometry and numerical optimization that the fractal like patterns are indeed the natural minimizers for the system. I will also discuss the implications of our work to developing shape changing soft matter which can be implemented in soft machines.

## Daniel Lew : Modeling the effect of vesicle traffic on polarity establishment in yeast

- Mathematical Biology ( 231 Views )There are two generally accepted models for the cell biological positive feedback loops that allow yeast cells to break symmetry and establish an axis of polarity. Both have been subjects of published mathematical analyses. Here I will argue that the models used to support a vesicle trafficking model incorporated a simplifying assumption that seemed innocuous but in fact was critical to their success. The assumption is not physically plausible, and its removal means that the model fails. I will show how changing other assumptions can make the model work, but there is no experimental support for those changes. And without them, the vesicle trafficking model perturbs polarity, rather than establishing polarity

## Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers

- Mathematical Biology ( 219 Views )Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment??naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.

## Andrew Brouwer : Harnessing environmental surveillance: mathematical modeling in the fight against polio

- Mathematical Biology ( 213 Views )Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013-14, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. However, we have lacked the theory to translate environmental surveillance into public health metrics; it is a priori unclear how much environmental surveillance can even say about population-level disease dynamics. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used differential algebra and profile likelihood techniques to perform identifiability analysis, that is, to assess how much information exists in the data for the model, and to quantify inference uncertainty. From the environmental surveillance data, we estimated the epidemic curve and transmission dynamics, determining that the outbreak likely happened much faster than previously thought. Our mathematical modeling approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.

## Jeremy Gunawardena : The Hopfield Barrier in eukaryotic gene regulation

- Mathematical Biology ( 201 Views )John Hopfield pointed out, in his seminal paper on kinetic proofreading, that if a biochemical system operates at thermodynamic equilibrium there is a barrier to how well it can achieve high-fidelity in transcription and translation. Hopfield showed that the only way to bypass this barrier is to dissipate energy and maintain the system away from equilibrium. Eukaryotic gene regulation uses dissipative mechanisms, such as nucleosome remodelling, DNA methylation and post-translational modification of histones, which are known to play a critical regulatory role but have been largely ignored in quantitative treatments. I will describe joint work with my colleague Angela DePace in which we use the recently-developed, graph-theoretic ?linear framework? to show that the sharpness with which a gene is turned ?on? or ?off? in response to an upstream transcription factor is limited if the regulatory system operates at equilibrium, even with arbitrary degrees of higher-order cooperativity. In contrast, if the regulatory system is maintained away from equilibrium, substantially higher degrees of sharpness can be achieved. We suggest that achieving sharpness in gene regulation exhibits a Hopfield Barrier, and uncover, along the way, a new interpretation for the ubiquitously used, but poorly justified, Hill function.

## Alex Mogilner : Mathematics and biology of molecular machines: from mitosis to Golgi

- Mathematical Biology ( 110 Views )Prior to cell division, chromosomes are segregated by mitotic spindle. This molecular machine self-assembles remarkably fast and accurately in an elegant process of search and capture, during which dynamic polymers from two centers grow and shrink rapidly and repeatedly until a contact with chromosomes is established. At the same time, the chromosomes interact with each other. I will show computer simulation and experimental microscopy results illustrating how cell deploys a number of redundant mechanisms optimizing the assembly by keeping it accurate yet rapid. Very similar strategies are used to assemble Golgi apparatus. The talk will illustrate how computer modeling assists experiment in unraveling mysteries of cell dynamics.

## Scott Schmidler : Stochastic Models of Protein Evolution

- Mathematical Biology ( 109 Views )Stochastic evolutionary models of biological sequences are widely used for phylogenetic inference and ancestral reconstruction. However, at long divergence times sequences enter the "twilight zone" of homology detection and reconstruction becomes very difficult. We describe a stochastic evolutionary model for protein 3D structure using elements of shape theory. This model significantly resolves this uncertainty and stabilizes evolutionary inferences. We also provide theoretical bounds on inferring evolutionary divergence times via connections to the probabilistic "cutoff phenomenon", in which a Markov chain remains far equilibrium for an extended period followed by a rapid transition into equilibrium. We show that this cutoff explains several previously reported problems with common default priors for Bayesian phylogenetic analysis, and suggest a new class of priors to address these problems.

## Lingchong You : Synthetic Biology: Microbial Communities by Design

- Mathematical Biology ( 105 Views )A major focus of synthetic biology is to engineer gene circuits to perform user-defined functions. These gene circuits can serve as well-defined models to probe basic biological questions of broad significance. In this talk, I will discuss our efforts along this line of research, whereby we have engineered gene circuits to program bacterial dynamics in time and space, guided by quantitative modeling and experiments. Insights learnt from these circuits have implications for developing new strategies to combat bacterial pathogens or to fabricate new materials.

## Sean Lawley : Stochastics in medicine: Delaying menopause and missing drug doses

- Mathematical Biology ( 104 Views )Stochastic modeling and analysis can help answer pressing medical questions. In this talk, I will attempt to justify this claim by describing recent work on two problems in medicine. The first problem concerns ovarian tissue cryopreservation, which is a proven tool to preserve ovarian follicles prior to gonadotoxic treatments. Can this procedure be applied to healthy women to delay or eliminate menopause? How can it be optimized? The second problem concerns medication nonadherence. What should you do if you miss a dose of medication? How can physicians design dosing regimens that are robust to missed/late doses? I will describe (a) how stochastics theory offers insights into these questions and (b) the mathematical questions that emerge from this investigation. The first problem is based on joint work with Joshua Johnson (University of Colorado School of Medicine), John Emerson (Yale University), and Kutluk Oktay (Yale School of Medicine).

## Samuel Isaacson : Spatial Jump Process Models for Estimating Antibody-Antigen Interactions

- Mathematical Biology ( 103 Views )Surface Plasmon Resonance (SPR) assays are a standard approach for quantifying kinetic parameters in antibody-antigen binding reactions. Classical SPR approaches ignore the bivalent structure of antibodies, and use simplified ODE models to estimate effective reaction rates for such interactions. In this work we develop a new SPR protocol, coupling a model that explicitly accounts for the bivalent nature of such interactions and the limited spatial distance over which such interactions can occur, to a SPR assay that provides more features in the generated data. Our approach allows the estimation of bivalent binding kinetics and the spatial extent over which antibodies and antigens can interact, while also providing substantially more robust fits to experimental data compared to classical bivalent ODE models. I will present our new modeling and parameter estimation approach, and demonstrate how it is being used to study interactions between antibodies and spike protein. I will also explain how we make the overall parameter estimation problem computationally feasible via the construction of a surrogate approximation to the (computationally-expensive) particle model. The latter enables fitting of model parameters via standard optimization approaches.

## Pierre-Emmanuel Jabin : Selection-Mutation models

- Mathematical Biology ( 98 Views )I present an overview of models of the Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions. Starting from a stochastic birth and death process, several types of deterministic or probabilistic models can be derived. When advantageous mutations are rare and small, a time scale separation takes place in the models leading to the concentration of the population along a few selected traits. Those then evolve according to a PDE of Hamilton-Jacobi type or to the canonical equation of adaptive dynamics.