Quicklists
public 01:14:49

Leonid Berlyand : PDE/ODE models of motility in active biosystems

  -   Mathematical Biology ( 107 Views )

In the first part of the talk we present a review of our work on PDE models of swimming bacteria. First we introduce a stochastic PDE model for a dilute suspension of self-propelled bacteria and obtain an explicit asymptotic formula for the effective viscosity (E.V.) that explains the mechanisms of the drastic reduction of E.V.. Next, we introduce a model for semi-dilute suspensions with pairwise interactions and excluded volume constraints. We compute E.V. analytically (based on a kinetic theory approach) and numerically. Comparison with the dilute case leads to a phenomenon of stochasticity arising from a deterministic system. We develop a ODE/PDE model that captures the phase transition, an appearance of correlations and large scale structures due to interbacterial interactions. Collaborators: S. Ryan, B. Haines, (PSU students); I. Aronson, A. Sokolov, D. Karpeev (Argonne); In the second part of the talk we discuss a system of two parabolic PDEs arising in modeling of motility of eukaryotic cells on substrates. The two key properties of this system are (i) presence of gradients in the coupling terms (gradient coupling) and (ii) mass (volume) preservation constraints. We derive the equation of the motion of the cell boundary, which is the mean curvature motion perturbed by a novel nonlinear term and prove that the sharp interface property of initial conditions is preserved in time. This novel term leads to surprising features of the motion of the interface such as discontinuities of the interface velocity and hysteresis. This is joint work with V. Rybalko and M. Potomkin.

public 01:34:48

Samuel Friedman : Using MultiCellDS and digital cell lines to initialize large-scale 3-D agent-based cancer simulations (up to 0.5M cells)

  -   Mathematical Biology ( 104 Views )

Understanding and predicting cancer progression requires detailed interacting models of tumor and stromal cells, all calibrated to experimental data. Work to date has been limited by a lack of standardization of data representations of multicellular systems, though this is now being addressed through MultiCellDS (MultiCellular Data Standard) and digital cell lines, which are standardized representations of microenvironment-dependent cell phenotypes. Computational cancer modelers require biologically and mathematically consistent initialization routines to seed simulations with cells defined in digital cell lines. In this talk, we will briefly introduce a 3-D agent-based model designed for use in integrative computational biology. We introduce a “snapshot generator” that can take a digital cancer cell line and produce for the agent-based model an initial cell arrangement and a phenotypic state based upon analyses of the digital cell line data elements. We demonstrate 2-D monolayer and 3-D hanging drop simulations up to 500k MCF7 cells, a common breast cancer cell line. We additionally demonstrate the production of digital snapshots, standardized simulation output that will facilitate computational model comparison with a common core of analytical tools. With an early version of these tools, we assess the match between simulations and in vitro experiments. In the future, this work will be used to create and simulate combinations of tumor and stromal cells from appropriate digital cell lines in realistic tissue environments in order to understand, predict, and eventually control cancer progression in individual patients.

public 02:34:48

REU students : student presentations

  -   Mathematical Biology ( 90 Views )

public 01:14:48

Lydia Bilinsky : A Mathematical Model of Glutamate and Glutamine Metabolism in the Rat: Implications for Glutathione Production

  -   Mathematical Biology ( 100 Views )

Glutathione (GSH), a tripeptide formed from glutamate, cysteine, and
glycine, is arguably the most important antioxidant in the body. NAPQI, a
byproduct of acetaminophen (APAP) metabolism which is toxic to liver
cells, is neutralized by GSH. Although produced in great quantity by the
liver, in cases of APAP overdose demand for GSH can outstrip supply,
causing liver failure. Currently, patients presenting to the ER with APAP
overdose are given an infusion of cysteine since it is believed to be the
rate-limiting amino acid in GSH synthesis, however, there is evidence that
under some circumstances glutamate can become rate-limiting. Complicating
the issue is that in most hepatocytes, glutamate is not absorbable from
blood plasma but is formed from glutamine, which is produced in large
amounts by the skeletal muscle. In order to develop better rescue
protocols for APAP overdose, we have developed a mathematical model of
glutamate and glutamine metabolism in the rat. We have also investigated
how model parameters should change in the case of increased cortisol
production, such as occurs during sepsis, trauma, burns, and other
pathological states; the cortisol-stressed state has been studied in rats
by giving them dexamethasone. We compare model predictions with
experimental data for the normal, healthy rat and dexamethasone-stressed
rat. Biological parameters are taken from the literature wherever possible.

public 01:14:48

Steven Baer : Multiscale Modeling of Neural Subcircuits and Feedback Mechanisms in the Outer Plexiform Layer of the Retina

  -   Mathematical Biology ( 128 Views )

Visual processing begins in the outer plexiform layer of the retina, where
bipolar, horizontal, and photoreceptor cells interact. In vertebrates, the
onset of dim backgrounds can enhance small spot flicker responses of
retinal horizontal cells. This flicker response is called background-
induced flicker enhancement. The underlying mechanism for the feedback
is unclear but competing hypotheses have been proposed. One is the GABA
hypothesis, which states that the inhibitory neurotransmitter GABA,
released from horizontal cells, mediates the feedback by blocking calcium
channels. Another is the ephaptic hypothesis, which contends that calcium
entry is regulated by changes in the electrical potential within the
intersynaptic space between cones and horizontal cells. In this study, a
continuum spine model of cone-horizontal cell synaptic circuitry is
formulated. The model captures two spatial scales - the scale of an
individual synapse and the scale of the receptive field involving hundreds
to thousands of synapses. We show that the ephaptic mechanism produces
reasonable qualitative agreement with the temporal dynamics exhibited by
flicker enhancement experiments. We find that although GABA produces
enhancement, this mechanism alone is insufficient to reproduce the
experimental results. We view this multiscale continuum approach as a
first step in formulating a multi-layer mathematical model of retinal
circuitry, which would include the other ‘brain nuclei’ within the retina:
the inner plexiform layer where bipolar, amacrine, interplexiform, and
ganglion cells interact.

public 01:14:56

Sylvie Méléard : Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks

  -   Mathematical Biology ( 105 Views )

This talk presents a work in progress with Sylvain Billard, Regis Ferriere and Chi Viet Tran. How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. The dynamics is ruled by births and deaths, mutations at birth and competition between individuals. The ecological phenomena depend only on the trait values but we expect that these effects influence the generation and maintenance of neutral variation. Considering a large population limit with rare mutations, but where the marker mutates faster than the trait, we prove the convergence of our stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process. This process restricted to the trait space is the Trait Substitution Sequence introduced by Metz et al. (1996). During the invasion of a favorable mutation, the marker associated with this favorable mutant is hitchhiked, creating a genetical bottleneck. The hitchhiking effect and how the neutral diversity is restored afterwards are studied. We show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions and that time-scale separation phenomena occur. The SFVP has important and relevant implications that are discussed and illustrated by simulations. We especially show that after a selective sweep, the neutral diversity restoration depend on mutations, ecological parameters and trait values.

public 01:14:42

Sandy Anderson : Hijacking Homeostatsis: How Heterogeneity Drives Tumor Progression and Treatment Failure

  -   Mathematical Biology ( 96 Views )

Heterogeneity in cancer is an observed fact, both genotypically and phenotypically. Cell-cell variation is seen in almost all aspects of cancer from early development all the way through to invasion and subsequent metastasis. Our current understanding of this heterogeneity has mainly focused at the genetic scale with little information on how this variation translates to actual changes in cell phenotypic behavior. Given that many genotypes can lead to the same cellular phenotype, it is important that we quantify the range and scope of this heterogeneity at the phenotypic scale as ultimately this variability will dictate the aggressiveness of the tumor and its treatability. Central to our understanding of this heterogeneity is how the tumor cells interact with each other and with their microenvironment. Since it is these very interactions that drive selection and that ultimately define the ecology of the tissue in which the tumor is developing. Considering an organ as an ecological system, means that we should view normal tissue homeostasis as an equilibrium that cancer cells must disrupt if they are to be successful. Disruption of this equilibrium is often one of the first events in cancer development, as the normal control mechanisms of the tissue are damaged or ignored. We will discuss the interplay between homeostasis, heterogeneity, evolution and ecology in cancer progression and treatment failure with an emphasis on the metabolism of breast cancer.

public 01:14:42

Hans Othmer : A hybrid model of tumor-stromal interactions in breast cancer

  -   Mathematical Biology ( 127 Views )

Ductal carcinoma in situ (DCIS) is an early stage non-invasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. We will discuss a mathematical model that incorporates the cross-talk between stromal and tumor cells, and which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-$\beta$ signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation, and describe a hybrid model for the interaction of cells with the tumor microenvironment. The analysis sheds light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggests how epigenetic changes in transformed cells affect tumor progression.