Quicklists
public 01:14:56

Dmitry Khavinson : From the Fundamental Theorem of Algebra to Astrophysics: a Harmonious Path

  -   Geometry and Topology ( 115 Views )

The Fundamental Theorem of Algebra first rigorously proved by Gauss states that each complex polynomial of degree n has precisely n complex roots. In recent years various extensions of this celebrated result have been considered. We shall discuss the extension of the FTA to harmonic polynomials of degree n. In particular, the 2003 theorem of D. Khavinson and G. Swiatek that shows that the harmonic polynomial zp(z); deg p = n > 1 has at most 3n − 2 zeros as was conjectured in the early 90's by T. Sheil-Small and A. Wilmshurst. More recently L. Geyer was able to show that the result is sharp for all n.

In 2004 G. Neumann and D. Khavinson showed that the maximal number of zeros of rational harmonic functions zr(z); deg r = n > 1 is 5n − 5. It turned out that this result con rfimed several consecutive conjectures made by astrophysicists S. Mao, A. Petters, H. Witt and, in its final form, the conjecture of S. H. Rhie that were dealing with the estimate of the maximal number of images of a star if the light from it is deflected by n co-planar masses. The first non-trivial case of one mass was already investigated by A. Einstein around 1912.

We shall also discuss the problem of gravitational lensing of a point source of light, e.g., a star, by an elliptic galaxy, more precisely the problem of the maximal number of images that one can observe. Under some more or less "natural" assumptions on the mass distribution within the galaxy one can prove that the number of visible images can never be more than four in some cases and six in the other. Interestingly, the former situation can actually occur and has been observed by astronomers. Still there are much more open questions than there are answers.

public 01:00:48

Yanir Rubinstein : Einstein metrics on Kahler manifolds

  -   Geometry and Topology ( 219 Views )

The Uniformization Theorem implies that any compact Riemann surface has a constant curvature metric. Kahler-Einstein (KE) metrics are a natural generalization of such metrics, and the search for them has a long and rich history, going back to Schouten, Kahler (30's), Calabi (50's), Aubin, Yau (70's) and Tian (90's), among others. Yet, despite much progress, a complete picture is available only in complex dimension 2. In contrast to such smooth KE metrics, in the mid 90's Tian conjectured the existence of KE metrics with conical singularities along a divisor (i.e., for which the manifold is `bent' at some angle along a complex hypersurface), motivated by applications to algebraic geometry and Calabi-Yau manifolds. More recently, Donaldson suggested a program for constructing smooth KE metrics of positive curvature out of such singular ones, and put forward several influential conjectures. In this talk I will try to give an introduction to Kahler-Einstein geometry and briefly describe some recent work mostly joint with R. Mazzeo that resolves some of these conjectures. One key ingredient is a new C^{2,\alpha} a priori estimate and continuity method for the complex Monge-Ampere equation. It follows that many algebraic varieties that may not admit smooth KE metrics (e.g., Fano or minimal varieties) nevertheless admit KE metrics bent along a simple normal crossing divisor.