Adam Levine : Heegaard Floer Homology and Closed Exotic 4-Manifolds
- Uploaded by schrett ( 27 Views )We discuss new methods for using the Heegaard Floer homology of hypersurfaces to distinguish between smooth closed 4-manifolds that are homeomorphic but non-diffeomorphic. Specifically, for a 4-manifold X with b_1(X)=1, the minimum rank of the reduced Heegaard Floer homology of any embedded 3-manifold X representing a generator of H_1(X) gives a diffeomorphism invariant of X. We use this invariant to distinguish certain infinite families of exotic 4-manifolds that cannot be distinguished by previously known techniques. Using related ideas, we also provide the first known examples of (non-simply-connected) exotic 4-manifolds with negative definite intersection form. This is joint work with Tye Lidman and Lisa Piccirillo.