## Eylem Zeliha Yildiz : Braids in planar open books and fillable surgeries.

- Geometry and Topology ( 129 Views )We'll give a useful description of braids in $\underset{n}{\#}(S^1\times S^2)$ using surgery diagrams, which will allow us to address families of knots in lens spaces that admit fillable positive contact surgery. We also demonstrate that smooth $16$ surgery to the knot $P(-2,3,7)$ bounds a rational ball, which admits a Stein handlebody. This answers a question left open by Thomas Mark and Bülent Tosun.

## Mark Stern : Introduction to p-harmonic forms, L^p Hodge theory, and L^p cohomology

- Geometry and Topology ( 114 Views )In this talk I will lay the foundations of the geometry of p-harmonic forms and L^p-Hodge theory. As an application, I will give strong evidence for (half of) a conjecture of Gromov on the L^p cohomology of negatively curved symmetric spaces.

## Lenny Ng : New algebraic invariants of Legendrian links

- Geometry and Topology ( 77 Views )For the past 25 years, a key player in contact topology has been the Floer-theoretic invariant called Legendrian contact homology. I'll discuss a package of new invariants for Legendrian knots and links that builds on Legendrian contact homology and is derived from rational symplectic field theory. This includes a Poisson bracket on Legendrian contact homology and a symplectic structure on augmentation varieties. Time permitting, I'll also describe an unexpected connection to cluster theory for a family of Legendrian links associated to positive braids. Parts of this are joint work in progress with Roger Casals, Honghao Gao, Linhui Shen, and Daping Weng.

## Anna Skorobogatova : Area-minimizing currents: structure of singularities and uniqueness of tangent cones

- Geometry and Topology ( 79 Views )The problem of determining the size and structure of the interior singular set of area-minimizing surfaces has been studied thoroughly in a number of different frameworks, with many ground-breaking contributions. In the framework of integral currents, when the surface has higher codimension than 1, the presence of singular points with flat tangent cones creates an obstruction to easily understanding the interior singularities. Until recently, little was known in this direction, particularly for surfaces of dimension higher than two, beyond Almgren’s celebrated dimension estimate on the interior singular set. In this talk I will discuss joint works with Camillo De Lellis and Paul Minter, where we establish (m-2)-rectifiability of the interior singular set of an m-dimensional area-minimizing integral current and classify tangent cones at \mathcal{H}^{m-2}-a.e. interior point.