Anubhav Nanavaty : Weight Filtrations and Derived Motivic Measures
- Geometry and Topology ( 0 Views )Weight Filtrations are mysterious: they record some shadow of how a variety might be recovered from smooth and projective ones. Some of the information recorded by weight filtrations can be understood via the motivic measures they define, i.e. group homomorphisms from the Grothendieck ring of varieties. With Zakharevich’s discovery of the higher K groups of the category of varieties, there is an ongoing project to understand these groups by lifting motivic measures (on the level of K_0) to so-called "derived" ones, i.e. on the level of K_i for all i. I will describe some of this work, which shows that if one closely studies how the Gillet-Soulé weight complex is constructed, then one can also obtain derived motivic measures to non-additive categories as well, such as the compact objects in the category of motivic spaces, along with that of compact objects in the motivic stable homotopy category. These new derived motivic measures allow us to answer questions in the literature, providing new ways to understand the higher K groups of varieties, and relating them to other interesting algebro-geometric objects in the literature.
Joshua Greene : Symplectic geometry and inscription problems
- Geometry and Topology ( 0 Views )The Square Peg Problem was posed by Otto Toeplitz in 1911. It asks whether every Jordan curve in the plane contains the vertices of a square, and it is still open to this day. I will survey the approaches to this problem and its relatives using symplectic geometry. This talk is based on joint work with Andrew Lobb.
Saman Habibi Esfahani : Non-linear Dirac operators and multi-valued harmonic forms
- Geometry and Topology ( 0 Views )This talk is based on joint work with Yang Li. I will discuss non-linear Dirac operators and related regularity questions, which arise in various problems in gauge theory, Floer theory, DT theory, and minimal submanifolds. These operators are used to define generalized Seiberg-Witten equations on 3- and 4-manifolds. Taubes proposed that counting harmonic spinors with respect to these operators on 3-manifolds could lead to new 3-manifold invariants, while Donaldson and Segal suggested counting spinors over special Lagrangians to define Calabi-Yau invariants. Similar counts appear in holomorphic Floer theory, where Doan and Rezchikov outlined a Fukaya 2-category for hyperkähler manifolds based on such counts. The central question in all of these proposals is whether the space of such harmonic spinors is compact. We address this question in certain cases, proving and disproving several conjectures in the field and, in particular, answering a question raised by Taubes in 1999. The key observation is that multivalued harmonic forms, in the sense of Almgren and De Lellis-Spadaro's Q-valued functions, play a crucial role in the problem.
Mohammed Abouzaid : Bordism of derived orbifolds
- Geometry and Topology ( 0 Views )Among the first significant results of algebraic topology is the computation, by Thom, Milnor, Novikov, and Wall among others, of the bordism groups of stably complex and oriented manifolds. After reviewing these results, I will discuss the notion of derived orbifolds, and briefly indicate how the bordism groups of these objects appear as universal recipients of invariants arising in Gromov-Witten theory and symplectic topology. Finally, I will state what is known about them, as well as some conjectures about the structure of these groups.
Luya Wang : Deformation inequivalent symplectic structures and Donaldsons four-six question
- Geometry and Topology ( 0 Views )Studying symplectic structures up to deformation equivalences is a fundamental question in symplectic geometry. Donaldson asked: given two homeomorphic closed symplectic four-manifolds, are they diffeomorphic if and only if their stabilized symplectic six-manifolds, obtained by taking products with CP^1 with the standard symplectic form, are deformation equivalent? I will discuss joint work with Amanda Hirschi on showing how deformation inequivalent symplectic forms remain deformation inequivalent when stabilized, under certain algebraic conditions. This gives the first counterexamples to one direction of Donaldson’s “four-six” question and the related Stabilizing Conjecture by Ruan. In the other direction, I will also discuss more supporting evidence via Gromov-Witten invariants.
Zhenyi Chen : A-infinity Sabloff Duality via the LSFT Algebra
- Geometry and Topology ( 0 Views )The Chekanov-Eliashberg dga is a powerful invariant for Legendrian links. Using augmentations of this dga, one can truncate its differential to produce linearized contact homology. About two decades ago, Sabloff established a duality in this setting, closely linked to the Poincaré duality of Lagrangian fillings. This truncation has since been generalized into a unital A-infinity category, Aug_+. In this talk, I will present new results that extend Sabloff duality from the level of cochain complexes to A-infinity bimodules over Aug_+. The key tool in this extension is Ng's LSFT algebra, which enlarges the Chekanov-Eliashberg dga. If time permits, I will also discuss how the LSFT algebra encodes additional homotopy coherent data, providing further insights into Sabloff duality.
Calvin McPhail-Snyder : Towards quantum complex Chern-Simons theory
- Geometry and Topology ( 0 Views )I will discuss recent joint work (with N. Reshetikhin) defining invariants 𝒥 of knot (and link and tangle) exteriors with flat 𝔰𝔩₂ connections. The construction is via a geometric version of the Reshetikhin-Turaev construction: it is algebraic and relies on the representation theory of quantum groups. In this talk I will instead focus on the properties of these invariants and explain why I think they are a good candidate for quantum Chern-Simons theory with noncompact gauge group SL₂(ℂ). I will also discuss a connection with (and a generalization of) the Volume Conjecture.
Sergey Cherkis : Gravitational Instantons: the Tesseron Landscape
- Geometry and Topology ( 0 Views )Since their introduction in Euclidean quantum gravity in mid-70’s, hyperkaehler Gravitational Instantons (aka tesserons) found their use in string theory and in supersymmetric quantum field theory. Their classification was recently completed and now their parameter space is being explored. We propose a systematic program of realizing each of these spaces as a moduli space of monopoles: the monopolization program. Monopolization reveals the combinatorial and geometric structure of the parameter space of all these spaces, equips each space with various natural structures (tautological bundles, Dirac-type operators, etc), and connects different types of integrable systems associated to these gravitational instantons.
Laura Wakelin : Finding characterising slopes for all knots
- Geometry and Topology ( 0 Views )A slope p/q is characterising for a knot K if the oriented homeomorphism type of the 3-manifold obtained by performing Dehn surgery of slope p/q on K uniquely determines the knot K. For any knot K, there exists a bound C(K) such that any slope p/q with |q|≥C(K) is characterising for K. This bound has previously been constructed for certain classes of knots, including torus knots, hyperbolic knots and composite knots. In this talk, I will give an overview of joint work with Patricia Sorya in which we complete this realisation problem for all remaining knots.
Tye Lidman : Cosmetic surgeries and Chern-Simons invariants
- Geometry and Topology ( 0 Views )Dehn surgery is a fundamental construction in topology where one removes a neighborhood of a knot from the three-sphere and reglues to obtain a new three-manifold. The Cosmetic Surgery Conjecture predicts two different surgeries on the same knot always gives different three-manifolds. We discuss how gauge theory, in particular, the Chern-Simons functional, can help approach this problem. This technique allows us to solve the conjecture in essentially all but one case. This is joint work with Ali Daemi and Mike Miller Eismeier.
Eylem Zeliha Yildiz : Braids in planar open books and fillable surgeries.
- Geometry and Topology ( 129 Views )We'll give a useful description of braids in $\underset{n}{\#}(S^1\times S^2)$ using surgery diagrams, which will allow us to address families of knots in lens spaces that admit fillable positive contact surgery. We also demonstrate that smooth $16$ surgery to the knot $P(-2,3,7)$ bounds a rational ball, which admits a Stein handlebody. This answers a question left open by Thomas Mark and Bülent Tosun.
Mark Stern : Introduction to p-harmonic forms, L^p Hodge theory, and L^p cohomology
- Geometry and Topology ( 114 Views )In this talk I will lay the foundations of the geometry of p-harmonic forms and L^p-Hodge theory. As an application, I will give strong evidence for (half of) a conjecture of Gromov on the L^p cohomology of negatively curved symmetric spaces.
Lenny Ng : New algebraic invariants of Legendrian links
- Geometry and Topology ( 77 Views )For the past 25 years, a key player in contact topology has been the Floer-theoretic invariant called Legendrian contact homology. I'll discuss a package of new invariants for Legendrian knots and links that builds on Legendrian contact homology and is derived from rational symplectic field theory. This includes a Poisson bracket on Legendrian contact homology and a symplectic structure on augmentation varieties. Time permitting, I'll also describe an unexpected connection to cluster theory for a family of Legendrian links associated to positive braids. Parts of this are joint work in progress with Roger Casals, Honghao Gao, Linhui Shen, and Daping Weng.
Anna Skorobogatova : Area-minimizing currents: structure of singularities and uniqueness of tangent cones
- Geometry and Topology ( 79 Views )The problem of determining the size and structure of the interior singular set of area-minimizing surfaces has been studied thoroughly in a number of different frameworks, with many ground-breaking contributions. In the framework of integral currents, when the surface has higher codimension than 1, the presence of singular points with flat tangent cones creates an obstruction to easily understanding the interior singularities. Until recently, little was known in this direction, particularly for surfaces of dimension higher than two, beyond Almgren’s celebrated dimension estimate on the interior singular set. In this talk I will discuss joint works with Camillo De Lellis and Paul Minter, where we establish (m-2)-rectifiability of the interior singular set of an m-dimensional area-minimizing integral current and classify tangent cones at \mathcal{H}^{m-2}-a.e. interior point.