## Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.

- Uploaded by ezy3 ( 38 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.

## Mark Stern : Nahm transforms and ALF Spaces

- Uploaded by schrett ( 35 Views )In this talk we consider the moduli space of Yang-Mills instantons on the family of hyperkahler 4 manifolds known as multi-center TaubNUT spaces. We describe the Nahm transform for flat manifolds. Then we sketch its extension to the above hyperkahler family, where it defines an isometry between the moduli space of instantons on the multi-center TaubNUT and the moduli space of solutions of a rococo system of ordinary differential equations. This is joint work with Sergey Cherkis and Andres Larrain Hubach

## Luca Di Cerbo : Extended Graph Manifolds, Dehn Fillings, and Einstein Metrics

- Uploaded by schrett ( 120 Views )In this talk, I will present some new topological obstructions for solving the Einstein equations (in Riemannian signature) on a large class of closed four-manifolds. Finally, I will show that complex-hyperbolic Einstein Dehn filling compactification cannot possibly performed in dimension four. This is in striking contrast with the real-hyperbolic case, and it answers (negatively) a fifteen years old question of Michael Anderson. If time permits, I will conclude with some tantalizing open problems both in dimension four and in higher dimensions. Part of this work is joint with M. Golla (Universit\’e de Nantes).

## Daniel Stern : Spectral shape optimization and new behaviors for free boundary minimal surfaces

- Uploaded by schrett ( 124 Views )Though the study of isoperimetric problems for Laplacian eigenvalues dates back to the 19th century, the subject has undergone a renaissance in recent decades, due in part to the discovery of connections with harmonic maps and minimal surfaces. By the combined work of several authors, we now know that unit-area metrics maximizing the first nonzero Laplace eigenvalue exist on any closed surface, and are realized by minimal surfaces in spheres. At the same time, work of Fraser-Schoen, Matthiesen-Petrides and others yields analogous results for the first eigenvalue of the Dirichlet-to-Neumann map on surfaces with boundary, with maximizing metrics induced by free boundary minimal immersions into Euclidean balls. In this talk, I'll describe a series of recent results characterizing the (perhaps surprising) asymptotic behavior of these free boundary minimal immersions (and associated Steklov-maximizing metrics) as the number of boundary components becomes large. (Based on joint work with Mikhail Karpukhin.)

## Viktor Burghardt : The Dual Motivic Witt Cohomology Steenrod Algebra

- Uploaded by schrett ( 158 Views )Over a field k, the zeroth homotopy group of the motivic sphere spectrum is given by the Grothendieck-Witt ring of symmetric bilinear forms GW(k). The Grothendieck-Witt ring GW(k) modulo the hyperbolic plane is isomorphic to the Witt ring of symmetric bilinear forms W(k) which further surjectively maps to Z/2. We may take motivic Eilenberg-Maclane spectra of Z/2, W(k) and GW(k). Voevodsky has computed the motivic Steenrod algebra of HZ/2 and solved the Bloch-Kato conjecture with its help. We move one step up in the above picture; we study the motivic Eilenberg-Maclane spectrum corresponding to the Witt ring and compute its dual Steenrod algebra.

## Isaac Sundberg : The Khovanov homology of slice disks

- Uploaded by schrett ( 117 Views )To a cobordism between links, Khovanov homology assigns a linear map that is invariant under boundary-preserving isotopy of the cobordism. In this talk, we study those maps arising from surfaces in the 4-ball and apply our findings to existence and uniqueness questions regarding slice disks bounding a given knot. This reflects joint works with Jonah Swann and Kyle Hayden.

## Demetre Kazaras : If Ricci is bounded below, then mass is in control!

- Uploaded by schrett ( 237 Views )The ADM mass of an isolated gravitational system is a geometric invariant measuring the total mass due to matter and other fields. In a previous work, we showed how to compute this invariant (in 3 spatial dimensions) by studying harmonic functions. Now I'll use this formula to consider the question: How flat is an asymptotically flat manifold with very little total mass? In the presence of a lower bound on Ricci curvature, we make progress on this question and confirm special cases of conjectures made by Ilmanen and Sormani.

## Calvin McPhail-Snyder : Making the Jones polynomial more geometric

- Uploaded by root ( 273 Views )The colored Jones polynomials are conjectured to detect geometric information about knot complements, such as hyperbolic volume. These relationships ("volume conjectures") are known in a number of special cases but are in general quite mysterious. In this talk I will discuss a program to better understand them by constructing holonomy invariants, which depend on both a knot K and a representation of its knot group into SL_2(C). By defining a version of the Jones polynomial that knows about geometric data, we hope to better understand why the ordinary Jones polynomial does too. Along the way we can obtain more powerful quantum invariants of knots and other topological objects.

## Subhankar Dey : Cable knots are not thin

- Uploaded by root ( 191 Views )Thurston's geometrization conjecture and its subsequent proof for Haken manifolds distinguish knots in S^3 by the geometries in the complement of the knots. While the definition of alternating knots make use of nice knot diagrams, Knot Floer homology, a knot invariant toolbox, defined by Ozsvath-Szabo and Rasumussen, generalizes the definition of alternating knots in the context of knot Floer homology and defines family of quasi-alternating knots which contains all alternating knots. Using Lipshitz-Ozsvath-Thurston's bordered Floer homology, we prove a partial affirmation of a folklore conjecture in knot Floer theory, which bridges these two viewpoints of looking at knots.

## Tye Lidman : Homology cobordisms with no 3-handles

- Uploaded by root ( 183 Views )Homology cobordisms are a special type of manifold which are relevant to a variety of areas in geometric topology, including knot theory and triangulability. We study the behavior of a variety of invariants under a particular family of four-dimensional homology cobordisms which naturally arise from Stein manifolds. This is joint work with Ali Daemi, Jen Hom, Shea Vela-Vick, and Mike Wong.