Luca Di Cerbo : Extended Graph Manifolds, Dehn Fillings, and Einstein Metrics
- Uploaded by schrett ( 64 Views )In this talk, I will present some new topological obstructions for solving the Einstein equations (in Riemannian signature) on a large class of closed four-manifolds. Finally, I will show that complex-hyperbolic Einstein Dehn filling compactification cannot possibly performed in dimension four. This is in striking contrast with the real-hyperbolic case, and it answers (negatively) a fifteen years old question of Michael Anderson. If time permits, I will conclude with some tantalizing open problems both in dimension four and in higher dimensions. Part of this work is joint with M. Golla (Universit\’e de Nantes).
Daniel Stern : Spectral shape optimization and new behaviors for free boundary minimal surfaces
- Uploaded by schrett ( 81 Views )Though the study of isoperimetric problems for Laplacian eigenvalues dates back to the 19th century, the subject has undergone a renaissance in recent decades, due in part to the discovery of connections with harmonic maps and minimal surfaces. By the combined work of several authors, we now know that unit-area metrics maximizing the first nonzero Laplace eigenvalue exist on any closed surface, and are realized by minimal surfaces in spheres. At the same time, work of Fraser-Schoen, Matthiesen-Petrides and others yields analogous results for the first eigenvalue of the Dirichlet-to-Neumann map on surfaces with boundary, with maximizing metrics induced by free boundary minimal immersions into Euclidean balls. In this talk, I'll describe a series of recent results characterizing the (perhaps surprising) asymptotic behavior of these free boundary minimal immersions (and associated Steklov-maximizing metrics) as the number of boundary components becomes large. (Based on joint work with Mikhail Karpukhin.)
Viktor Burghardt : The Dual Motivic Witt Cohomology Steenrod Algebra
- Uploaded by schrett ( 111 Views )Over a field k, the zeroth homotopy group of the motivic sphere spectrum is given by the Grothendieck-Witt ring of symmetric bilinear forms GW(k). The Grothendieck-Witt ring GW(k) modulo the hyperbolic plane is isomorphic to the Witt ring of symmetric bilinear forms W(k) which further surjectively maps to Z/2. We may take motivic Eilenberg-Maclane spectra of Z/2, W(k) and GW(k). Voevodsky has computed the motivic Steenrod algebra of HZ/2 and solved the Bloch-Kato conjecture with its help. We move one step up in the above picture; we study the motivic Eilenberg-Maclane spectrum corresponding to the Witt ring and compute its dual Steenrod algebra.
Isaac Sundberg : The Khovanov homology of slice disks
- Uploaded by schrett ( 78 Views )To a cobordism between links, Khovanov homology assigns a linear map that is invariant under boundary-preserving isotopy of the cobordism. In this talk, we study those maps arising from surfaces in the 4-ball and apply our findings to existence and uniqueness questions regarding slice disks bounding a given knot. This reflects joint works with Jonah Swann and Kyle Hayden.
Demetre Kazaras : If Ricci is bounded below, then mass is in control!
- Uploaded by schrett ( 172 Views )The ADM mass of an isolated gravitational system is a geometric invariant measuring the total mass due to matter and other fields. In a previous work, we showed how to compute this invariant (in 3 spatial dimensions) by studying harmonic functions. Now I'll use this formula to consider the question: How flat is an asymptotically flat manifold with very little total mass? In the presence of a lower bound on Ricci curvature, we make progress on this question and confirm special cases of conjectures made by Ilmanen and Sormani.
Calvin McPhail-Snyder : Making the Jones polynomial more geometric
- Uploaded by root ( 230 Views )The colored Jones polynomials are conjectured to detect geometric information about knot complements, such as hyperbolic volume. These relationships ("volume conjectures") are known in a number of special cases but are in general quite mysterious. In this talk I will discuss a program to better understand them by constructing holonomy invariants, which depend on both a knot K and a representation of its knot group into SL_2(C). By defining a version of the Jones polynomial that knows about geometric data, we hope to better understand why the ordinary Jones polynomial does too. Along the way we can obtain more powerful quantum invariants of knots and other topological objects.
Subhankar Dey : Cable knots are not thin
- Uploaded by root ( 169 Views )Thurston's geometrization conjecture and its subsequent proof for Haken manifolds distinguish knots in S^3 by the geometries in the complement of the knots. While the definition of alternating knots make use of nice knot diagrams, Knot Floer homology, a knot invariant toolbox, defined by Ozsvath-Szabo and Rasumussen, generalizes the definition of alternating knots in the context of knot Floer homology and defines family of quasi-alternating knots which contains all alternating knots. Using Lipshitz-Ozsvath-Thurston's bordered Floer homology, we prove a partial affirmation of a folklore conjecture in knot Floer theory, which bridges these two viewpoints of looking at knots.
Tye Lidman : Homology cobordisms with no 3-handles
- Uploaded by root ( 163 Views )Homology cobordisms are a special type of manifold which are relevant to a variety of areas in geometric topology, including knot theory and triangulability. We study the behavior of a variety of invariants under a particular family of four-dimensional homology cobordisms which naturally arise from Stein manifolds. This is joint work with Ali Daemi, Jen Hom, Shea Vela-Vick, and Mike Wong.
Shubham Dwivedi : Geometric flows of $G_2$ structures
- Uploaded by root ( 146 Views )We will start by discussing a flow of isometric $G_2$ structures. We consider the negative gradient flow of the energy functional restricted to the class of $G_2$ structures inducing a given Riemannian metric. We will discuss various analytic aspects of the flow including global and local derivative estimates, a compactness theorem and a monotonicity formula for the solutions. After defining an entropy functional we will prove that low entropy initial data lead to solutions that exist for all time and converge smoothly to a $G_2$ structure with divergence free torsion. We will also discuss finite time singularities and the singular set of the solutions. Finally, we will discuss the isometric flow "coupled” with the Ricci flow of the underlying metric, which again is a flow of $G_2$ structures, and discuss some of its properties. This is a based on two separate joint works with Panagiotis Gianniotis (University of Athens) and Spiro Karigiannis (University of Waterloo).
Daniel Stern : Scalar curvature and circle-valued harmonic maps
- Uploaded by root ( 114 Views )We introduce a new tool for relating the scalar curvature of a Riemannian manifold to its global geometry and topology, based on the study of level sets of harmonic functions and harmonic maps to the circle. We will explain how these ideas lead to simple new proofs and improvements upon some well-known results in three-manifold geometry and general relativity, previously studied primarily via minimal surface and Dirac operator methods.