Calvin McPhail-Snyder : Making the Jones polynomial more geometric
- Geometry and Topology ( 370 Views )The colored Jones polynomials are conjectured to detect geometric information about knot complements, such as hyperbolic volume. These relationships ("volume conjectures") are known in a number of special cases but are in general quite mysterious. In this talk I will discuss a program to better understand them by constructing holonomy invariants, which depend on both a knot K and a representation of its knot group into SL_2(C). By defining a version of the Jones polynomial that knows about geometric data, we hope to better understand why the ordinary Jones polynomial does too. Along the way we can obtain more powerful quantum invariants of knots and other topological objects.
Simon Brendle : Singularity formation in geometric flows
- Geometry and Topology ( 309 Views )Geometric evolution equations like the Ricci flow and the mean curvature flow play a central role in differential geometry. The main problem is to understand singularity formation. In this talk, I will discuss recent results which give a complete picture of all the possible limit flows in 2D mean curvature flow with positive mean curvature, and in 3D Ricci flow.
Luca Di Cerbo : Extended Graph Manifolds, Dehn Fillings, and Einstein Metrics
- Geometry and Topology ( 301 Views )In this talk, I will present some new topological obstructions for solving the Einstein equations (in Riemannian signature) on a large class of closed four-manifolds. Finally, I will show that complex-hyperbolic Einstein Dehn filling compactification cannot possibly performed in dimension four. This is in striking contrast with the real-hyperbolic case, and it answers (negatively) a fifteen years old question of Michael Anderson. If time permits, I will conclude with some tantalizing open problems both in dimension four and in higher dimensions. Part of this work is joint with M. Golla (Universit\’e de Nantes).
Robert Bryant : The affine Bonnet problem
- Geometry and Topology ( 296 Views )The classical Euclidean problem studied by Bonnet in the 19th century was to determine whether, and in how many ways, a Riemannian surface can be isometrically embedded into Euclidean 3-space so that its mean curvature is a prescribed function. He found that, generically, specifying a metric and mean curvature admitted no solution but that there are special cases in which, not only are there solutions, but there are even 1-parameter families of distinct (i.e., mutually noncongruent) solutions. Much later, these Bonnet surfaces were found to be intimately connected with integrable systems and Lax pairs. In this talk, I will consider the analogous problem in affine geometry: To determine whether, and in how many ways, a surface endowed with a Riemannian metric g and a function H can be immersed into affine 3-space in such a way that the induced Blaschke metric is g and the induced affine mean curvature is H. This affine problem is, in many ways, richer and more interesting than the corresponding Euclidean problem. I will classify the pairs (g,H) that display the greatest flexibility in their solution space and explain what is known about the (suspected) links with integrable systems and Lax pairs.
Curtis Porter : Spinning Black Holes and CR 3-Folds
- Geometry and Topology ( 276 Views )Some physically significant solutions to Einstein's field equations are spacetimes which are foliated by a family of curves called a shear-free null geodesic congruence (SFNGC). Examples include models of gravitational waves that were recently detected, and rotating black holes. The properties of a SFNGC induce a CR structure on the 3-dimensional leaf space of the foliation. The Kerr Theorem says that the family of metrics associated to a SFNGC contains a conformally flat representative iff the corresponding CR structure is embeddable in a real hyperquadric. Using Cartan's method of moving frames, we can classify which Levi-nondegenerate CR 3-folds are embeddable in the hyperquadric.
Nelia Charalambous : On the $L^p$ Spectrum of the Hodge Laplacian on Non-Compact Manifolds
- Geometry and Topology ( 271 Views )One of the central questions in Geometric Analysis is the interplay between the curvature of the manifold and the spectrum of an operator. In this talk, we will be considering the Hodge Laplacian on differential forms of any order $k$ in the Banach Space $L^p$. In particular, under sufficient curvature conditions, it will be demonstrated that the $L^p\,$ spectrum is independent of $p$ for $1\!\leq\!p\!\leq\! \infty.$ The underlying space is a $C^{\infty}$-smooth non-compact manifold $M^n$ with a lower bound on its Ricci Curvature and the Weitzenb\"ock Tensor. The further assumption on subexponential growth of the manifold is also necessary. We will see that in the case of Hyperbolic space the $L^p$ spectrum does in fact depend on $p.$ As an application, we will show that the spectrum of the Laplacian on one-forms has no gaps on certain manifolds with a pole and on manifolds that are in a warped product form. This will be done under weaker curvature restrictions than what have been used previously; it will be achieved by finding the $L^1$ spectrum of the Laplacian.
John McCuan : Minimal graphs with jump discontinuities
- Geometry and Topology ( 254 Views )I will discuss some examples of minimal graphs with jump discontinuities in their boundaries. Robert Huff and I constructed these examples in response to a question of John Urbas: Is it possible for a minimal graph over a smooth annular domain to have an isolated jump discontinuity on the inner boundary component? I will also give a brief overview of the boundary consistency problem for Di Giorgi's generalized solutions of the minimal surface equation and discuss this question in that context. The construction of the examples uses the Weierstrass representation and the developing map introduced by Huff in the study of capillary problems.
Subhankar Dey : Cable knots are not thin
- Geometry and Topology ( 246 Views )Thurston's geometrization conjecture and its subsequent proof for Haken manifolds distinguish knots in S^3 by the geometries in the complement of the knots. While the definition of alternating knots make use of nice knot diagrams, Knot Floer homology, a knot invariant toolbox, defined by Ozsvath-Szabo and Rasumussen, generalizes the definition of alternating knots in the context of knot Floer homology and defines family of quasi-alternating knots which contains all alternating knots. Using Lipshitz-Ozsvath-Thurston's bordered Floer homology, we prove a partial affirmation of a folklore conjecture in knot Floer theory, which bridges these two viewpoints of looking at knots.
Nathan Dowlin : A spectral sequence from Khovanov homology to knot Floer homology
- Geometry and Topology ( 238 Views )Khovanov homology and knot Floer homology are two knot invariants which are defined using very different techniques, with Khovanov homology having its roots in representation theory and knot Floer homology in symplectic geometry. However, they seem to contain a lot of the same topological data about knots. Rasmussen conjectured that this similarity stems from a spectral sequence from Khovanov homology to knot Floer homology. In this talk I will give a construction of this spectral sequence. The construction utilizes a recently defined knot homology theory HFK_2 which provides a framework in which the two theories can be related.
Isaac Sundberg : The Khovanov homology of slice disks
- Geometry and Topology ( 236 Views )To a cobordism between links, Khovanov homology assigns a linear map that is invariant under boundary-preserving isotopy of the cobordism. In this talk, we study those maps arising from surfaces in the 4-ball and apply our findings to existence and uniqueness questions regarding slice disks bounding a given knot. This reflects joint works with Jonah Swann and Kyle Hayden.
Yanir Rubinstein : Einstein metrics on Kahler manifolds
- Geometry and Topology ( 232 Views )The Uniformization Theorem implies that any compact Riemann surface has a constant curvature metric. Kahler-Einstein (KE) metrics are a natural generalization of such metrics, and the search for them has a long and rich history, going back to Schouten, Kahler (30's), Calabi (50's), Aubin, Yau (70's) and Tian (90's), among others. Yet, despite much progress, a complete picture is available only in complex dimension 2. In contrast to such smooth KE metrics, in the mid 90's Tian conjectured the existence of KE metrics with conical singularities along a divisor (i.e., for which the manifold is `bent' at some angle along a complex hypersurface), motivated by applications to algebraic geometry and Calabi-Yau manifolds. More recently, Donaldson suggested a program for constructing smooth KE metrics of positive curvature out of such singular ones, and put forward several influential conjectures. In this talk I will try to give an introduction to Kahler-Einstein geometry and briefly describe some recent work mostly joint with R. Mazzeo that resolves some of these conjectures. One key ingredient is a new C^{2,\alpha} a priori estimate and continuity method for the complex Monge-Ampere equation. It follows that many algebraic varieties that may not admit smooth KE metrics (e.g., Fano or minimal varieties) nevertheless admit KE metrics bent along a simple normal crossing divisor.
Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set
- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.
Amit Einav : Entropic Inequality on the Sphere
- Geometry and Topology ( 222 Views )It is an interesting well known fact that the relative entropy with respect to the Gaussian measure on $\mathbb{R}^N$ satisfies a simple subadditivity property. Namely, if $\Pi_1^{(i)}(F_N)$ is the first marginal of the density function F_N in the i-th variable then \begin{equation} \sum_{i=1}^N H(\Pi_1^{(i)}(F_N) | \gamma_1) \leq H(F_N | \gamma_N), \end{equation} where $\gamma_k$ is the standard Gaussian on $\mathbb{R}^k$. Surprisingly enough, when one tries to achieve a similar result on $\mathbb{S}^{N-1}(\sqrt{N})$ a factor of 2 appears in the right hand side of the inequality (a result due to Carlen, Lieb and Loss), and the constant is sharp. Besides a deviation from the simple equivalence of ensembles principle in equilibrium Statistical Mechanics, this entropic inequality on the sphere has interesting ramifications in other fields, such as Kinetic Theory. In this talk we will present conditions on the density function F_N, on the sphere, under which we can get an almost subaditivity property; i.e. the factor 2 can be replaced with a factor of $1+\epsilon_N$, with $\epsilon_N$ given explicitly and going to zero. The main tools to be used in order to proved this result are an entropy conservation extension of F_N to $\mathbb{R}^N$ together with comparison of appropriate transportation distances such as the entropy, Fisher information and Wasserstein distance between the marginal of the original density and that of the extension. Time permitting, we will give an example, one that arises naturally in the investigation of the so-called Kac Model, to many families of functions that satisfy these conditions.
Richard Hain : The Lie Algebra of the Mapping Class Group, Part 2
- Geometry and Topology ( 218 Views )In this talk I will review the construction of the Lie algebra associated to the mapping class group of a (possibly decorated) surface and explain how this generalizes the Lie algebra associated to the pure braid group. I will also explain the analogue of the KZ-equation in the mapping class group case. In the second talk I will discuss filtrations of this Lie algebra associated to curve systems on the surface and their relation to handlebody groups.
Curtis Porter : Straightening out degeneracy in CR geometry: When can it be done?
- Geometry and Topology ( 216 Views )CR geometry studies boundaries of domains in C^n and their generalizations. A central role is played by the Levi form L of a CR manifold M, which measures the failure of the CR bundle to be integrable, so that when L has a nontrivial kernel of constant rank, M is foliated by complex manifolds. If the local transverse structure to this foliation still determines a CR manifold N, then we say M is CR-straightenable, and the Tanaka-Chern-Moser classification of CR hypersurfaces with nondegenerate Levi form can be applied to N. It remains to classify those M for which L is degenerate and no such straightening exists. This was accomplished in dimension 5 by Ebenfelt, Isaev-Zaitzev, and Medori-Spiro. I will discuss their results as well as my recent progress on the problem in dimension 7 (http://arxiv.org/abs/1511.04019).
Luca Di Cerbo : Seiberg-Witten equations on manifolds with cusps and geometric applications.
- Geometry and Topology ( 214 Views )In this talk, I will discuss the Seiberg-Witten equations on finite volume Riemannian manifolds which are diffeomorphic to the product of two hyperbolic Riemann surfaces of finite topological type. Finally, using a Seiberg-Witten scalar curvature estimate I will present several results concerning the Riemannian geometry of these spaces.
Christina Tonnesen-Friedman : Canonical classes on admissible bundles
- Geometry and Topology ( 203 Views )For each K¨ahler class on a compact K¨ahler manifold there is a lower bound of the Calabi functional, which we call the ``potential energy''. Fixing the volume and letting the K¨ahler classes vary, the energy defines a functional which may be studied in it?s own right. Any critical point of the energy functional is then a K¨ahler class whose extremal K¨ahler metrics (if any) are so-called strongly extremal metrics. We take the well-studied case of Hirzebruch surfaces and generalize it in two different directions; along the dimension of the base and along the genus of the base. In the latter situation we are able to give a very concrete description of the corresponding dynamical system (as defined first by S. Simanca and L. Stelling). The talk is based on work in progress with Santiago Simanca.
Jim Isenberg : Construcing solutions of the Einstein constraint equations
- Geometry and Topology ( 195 Views )The first step in finding a spacetime solution to the Einstein gravitational field equations via the inital value formulation is to construct initial data which satisfy the Einstein constraint equations. There are three ways of carrying out this construction which have been found to be useful: the conformal and conformal thin sandwich methods, the gluing techniques, and the quasi-spherical approaches. We describe each of these, we discuss their advantages and disadvantages, we outline some of their recent successful applications, and we present some of the outstanding questions remaining to be solved from each of these perspectives.
Jason Parsley : Helicity, Configuration Spaces, & Characteristic Classes
- Geometry and Topology ( 191 Views )The helicity of a vector field in R^3, an analog to linking number, measures the extent to which its flowlines coil and wrap around one another. Helicity turns out to be invariant under volume-preserving diffeomorphisms that are isotopic to the identity. Motivated by Bott-Taubes integration, we provide a new proof of this invariance using configuration spaces. We then present a new topological explanation for helicity, as a characteristic class. Among other results, this point of view allows us to completely characterize the diffeomorphisms under which helicity is invariant and give an explicit formula for the change in helicity under a diffeomorphism under which helicity is not invariant. (joint work with Jason Cantarella, U. of Georgia)
Colleen Robles : A refinement of the Lefschetz decomposition for hyperkahler manifolds
- Geometry and Topology ( 191 Views )The cohomology (with complex coefficients) of a compact kahler manifold M admits an action of the algebra sl(2,C), and this action plays an essential role in the analysis of the cohomology. In the case that M is a hyperkahler manifold Verbitsky and Looijenga—Lunts showed there is a family of such sl(2,C)’s generating an algebra isomorphic to so(4,b_2-2), and this algebra similarly can tell us quite a bit about the cohomology of the hyperkahler. I will describe some results of this nature for both the Hodge numbers and Nagai’s conjecture on the nilpotent logarithm of monodromy arising from a degeneration. This is joint work with Mark Green, Radu Laza and Yoonjoo Kim.
Mark Stern : Stability, dynamics, and the quantum Hodge theory of vector bundles
- Geometry and Topology ( 187 Views )I will discuss various approaches to the question: When does a vector bundle admit a holomorphic structure? I will explore applications of Yang-Mills theory, geometric quantization, and discrete dynamics to this problem.
Lorenzo Foscolo : New G2-holonomy cones and exotic nearly Kähler structures on the 6-sphere and the product of two 3-spheres.
- Geometry and Topology ( 187 Views )Compact 6-dimensional nearly Kähler manifolds are the cross-sections of Riemannian cones with holonomy G2. A long-standing problem has been the question of existence of complete nearly Kähler 6-manifolds besides the four known homogeneous ones. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kähler structures on the 6-sphere and on the product of two 3-spheres. This is joint work with Mark Haskins, Imperial College London.
Dmitri Burago : Math Mozaic
- Geometry and Topology ( 185 Views )The lecture includes the main part (to be chosen on the spot) and a few mini-talks with just definitions, motivations, some ideas of proofs, and open problems. I will discuss some (hardly all) of the following topics. 1. A survival guide for feeble fish. How fish can get from A to B in turbulent waters which maybe much fasted than the locomotive speed of the fish provided that there is no large-scale drift of the water flow. This is related to homogenization of G-equation which is believed to govern many combustion processes. Based on a joint work with S. Ivanov and A. Novikov. 2. One of the greatest achievements in Dynamics in the XX century is the KAM Theory. It says that a small perturbation of a non-degenerate completely integrable system still has an overwhelming measure of invariant tori with quasi-periodic dynamics. What happens outside KAM tori has been remaining a great mystery. The main quantitate invariants so far are entropies. It is easy, by modern standards, to show that topological entropy can be positive. It lives, however, on a zero measure set. We are now able to show that metric entropy can become infinite too, under arbitrarily small C^{infty} perturbations, answering an old-standing problem of Kolmogorov.. Furthermore, a slightly modified construction resolves another longstanding problem of the existence of entropy non-expansive systems. In these modified examples positive positive metric entropy is generated in arbitrarily small tubular neighborhood of one trajectory. Join with S. Ivanov and Dong. Chen. 3. What is inside? Imagine a body with some intrinsic structure, which, as usual, can be thought of as a metric. One knows distances between boundary points (say, by sending waves and measuring how long it takes them to reach specific points on the boundary). One may think of medical imaging or geophysics. This topic is related to minimal fillings and surfaces in normed spaces. Joint work with S. Ivanov. 4. How well can we approximate an (unbounded) space by a metric graph whose parameters (degree of vertices, length of edges, density of vertices etc) are uniformly bounded? We want to control the ADDITIVE error. Some answers (the most difficult one is for $\R^2$) are given using dynamics and Fourier series. Joint with Ivanov. 5.How can one discretize elliptic PDEs without using finite elements, triangulations and such? On manifolds and even reasonably nice mmspaces. A notion of \rho-Laplacian and its stability. Joint with S. Ivanov and Kurylev. 6. A solution of Busemanns problem on minimality of surface area in normed spaces for 2-D surfaces (including a new formula for the area of a convex polygon). Joint with S. Ivanov.
Jonathan Hanselman : The cosmetic surgery conjecture and Heegaard Floer homology
- Geometry and Topology ( 181 Views )The cosmetic surgery conjecture states that no two surgeries on a given knot produce the same 3-manifold (up to orientation preserving diffeomorphism). Floer homology has proved to be a powerful tool for approaching this problem; I will survey partial results that are known and then show that these results can be improved significantly. If a knot in S^3 admits purely cosmetic surgeries, then the surgery slopes are +/- 2 or +/- 1/q, and for any given knot we can give an upper bound for q in terms of the Heegaard Floer thickness. In particular, for any knot there are at most finitely many potential pairs of cosmetic surgery slopes. With the aid of computer computation we show that the conjecture holds for all knots with at most 15 crossings.
Marcus Khuri : On the Penrose Inequality
- Geometry and Topology ( 181 Views )The cosmic censorship conjecture roughly states that singularities in the evolution of spacetime are always hidden from the outside world by event horizons. As a test for this conjecture Penrose proposed the inequality M >= (A/16pi)^1/2, relating the total ADM mass M of a spacetime to the area A of an event horizon. For time symmetric initial data sets of Einstein's equations this inequality has been confirmed, independently by Huisken and Ilmanen (for one black hole) and by Bray (for multiple black holes). The purpose of this talk is to show how the time symmetric proofs can be generalized to apply to general initial data, assuming existence for a canonical degenerate elliptic system of equations. This is joint work with Hubert Bray.
Alexander Volkmann : Nonlinear mean curvature flow with Neumann boundary condition
- Geometry and Topology ( 178 Views )Using a level set formulation and elliptic regularization we define a notion of weak solutions of nonlinear mean curvature flow with Neumann boundary condition. We then outline the proof of an existence result for the weak level set flow. Finally, we discuss some geometric applications of this flow.
Thomas Walpuski : G2instantons over twisted connected sums
- Geometry and Topology ( 178 Views )In joint work with H. Sá Earp we introduced a method to construct G2instantons over compact G2manifolds arising as the twisted connected sum of a matching pair of building blocks. I will recall some of the background (including the twisted connected sum construction and a short discussion as to why one should care about G2instantons), discuss our main result and explain how to interpret it in terms of certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface. If time permits, I will discuss an idea to construct the input required by our gluing theorem.
Zheng Zhang : On motivic realizations for variations of Hodge structure of Calabi-Yau type over Hermitian symmetric domains
- Geometry and Topology ( 177 Views )Based on the work of Gross and Sheng-Zuo, Friedman and Laza have classified variations of real Hodge structure of Calabi-Yau type over Hermitian symmetric domains. In particular, over every irreducible Hermitian symmetric domain there exists a canonical variation of real Hodge structure of Calabi-Yau type. In this talk, we wil review Friedman and Lazas classification. A natural question to ask is whether the canonical Hermitian variations of Hodge structure of Calabi-Yau type come from families of Calabi-Yau manifolds (geometric realization). In general, this is very difficult and is still open for small dimensional domains. We will discuss an intermediate question, namely does the canonical variations occur in algebraic geometry as sub-variations of Hodge structure of those coming from families of algebraic varieties (motivic realization). In particular, we will give motivic realizations for the canonical variations of Calabi-Yau type over irreducible tube domains of type A using abelian varieties of Weil type.
Vera Vértesi : Knots in contact 3--manifolds
- Geometry and Topology ( 168 Views )In this talk I will give a purely combinatorial description of Knot Floer Homology for knots in the three-sphere (Manolescu-Ozsváth-Szabó-Thurston). In this homology there is a naturally associated invariant for transverse knots. This invariant gives a combinatorial but still an effective way to distinguish transverse knots (Ng-Ozsváth-Thurston). Moreover it leads to the construction of an infinite family of non-transversely simple knot-types (Vértesi).