## Demetre Kazaras : If Ricci is bounded below, then mass is in control!

- Geometry and Topology ( 553 Views )The ADM mass of an isolated gravitational system is a geometric invariant measuring the total mass due to matter and other fields. In a previous work, we showed how to compute this invariant (in 3 spatial dimensions) by studying harmonic functions. Now I'll use this formula to consider the question: How flat is an asymptotically flat manifold with very little total mass? In the presence of a lower bound on Ricci curvature, we make progress on this question and confirm special cases of conjectures made by Ilmanen and Sormani.

## Renato Bettiol : Positive biorthogonal curvature in dimension 4

- Geometry and Topology ( 384 Views )A 4-manifold is said to have positive biorthogonal curvature if the average of sectional curvatures of any pair of orthogonal planes is positive. In this talk, I will describe a construction of metrics with positive biorthogonal curvature on the product of spheres, and then combine it with recent surgery stability results of Hoelzel to classify (up to homeomorphism) the closed simply-connected 4-manifolds that admit a metric with positive biorthogonal curvature.

## Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.

- Geometry and Topology,Uploaded Videos ( 315 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.

## Simon Brendle : Singularity formation in geometric flows

- Geometry and Topology ( 309 Views )Geometric evolution equations like the Ricci flow and the mean curvature flow play a central role in differential geometry. The main problem is to understand singularity formation. In this talk, I will discuss recent results which give a complete picture of all the possible limit flows in 2D mean curvature flow with positive mean curvature, and in 3D Ricci flow.

## Viktor Burghardt : The Dual Motivic Witt Cohomology Steenrod Algebra

- Geometry and Topology ( 279 Views )Over a field k, the zeroth homotopy group of the motivic sphere spectrum is given by the Grothendieck-Witt ring of symmetric bilinear forms GW(k). The Grothendieck-Witt ring GW(k) modulo the hyperbolic plane is isomorphic to the Witt ring of symmetric bilinear forms W(k) which further surjectively maps to Z/2. We may take motivic Eilenberg-Maclane spectra of Z/2, W(k) and GW(k). Voevodsky has computed the motivic Steenrod algebra of HZ/2 and solved the Bloch-Kato conjecture with its help. We move one step up in the above picture; we study the motivic Eilenberg-Maclane spectrum corresponding to the Witt ring and compute its dual Steenrod algebra.

## Curtis Porter : Spinning Black Holes and CR 3-Folds

- Geometry and Topology ( 276 Views )Some physically significant solutions to Einstein's field equations are spacetimes which are foliated by a family of curves called a shear-free null geodesic congruence (SFNGC). Examples include models of gravitational waves that were recently detected, and rotating black holes. The properties of a SFNGC induce a CR structure on the 3-dimensional leaf space of the foliation. The Kerr Theorem says that the family of metrics associated to a SFNGC contains a conformally flat representative iff the corresponding CR structure is embeddable in a real hyperquadric. Using Cartan's method of moving frames, we can classify which Levi-nondegenerate CR 3-folds are embeddable in the hyperquadric.

## Nelia Charalambous : On the $L^p$ Spectrum of the Hodge Laplacian on Non-Compact Manifolds

- Geometry and Topology ( 271 Views )One of the central questions in Geometric Analysis is the interplay between the curvature of the manifold and the spectrum of an operator. In this talk, we will be considering the Hodge Laplacian on differential forms of any order $k$ in the Banach Space $L^p$. In particular, under sufficient curvature conditions, it will be demonstrated that the $L^p\,$ spectrum is independent of $p$ for $1\!\leq\!p\!\leq\! \infty.$ The underlying space is a $C^{\infty}$-smooth non-compact manifold $M^n$ with a lower bound on its Ricci Curvature and the Weitzenb\"ock Tensor. The further assumption on subexponential growth of the manifold is also necessary. We will see that in the case of Hyperbolic space the $L^p$ spectrum does in fact depend on $p.$ As an application, we will show that the spectrum of the Laplacian on one-forms has no gaps on certain manifolds with a pole and on manifolds that are in a warped product form. This will be done under weaker curvature restrictions than what have been used previously; it will be achieved by finding the $L^1$ spectrum of the Laplacian.

## Daniel Stern : Spectral shape optimization and new behaviors for free boundary minimal surfaces

- Geometry and Topology ( 259 Views )Though the study of isoperimetric problems for Laplacian eigenvalues dates back to the 19th century, the subject has undergone a renaissance in recent decades, due in part to the discovery of connections with harmonic maps and minimal surfaces. By the combined work of several authors, we now know that unit-area metrics maximizing the first nonzero Laplace eigenvalue exist on any closed surface, and are realized by minimal surfaces in spheres. At the same time, work of Fraser-Schoen, Matthiesen-Petrides and others yields analogous results for the first eigenvalue of the Dirichlet-to-Neumann map on surfaces with boundary, with maximizing metrics induced by free boundary minimal immersions into Euclidean balls. In this talk, I'll describe a series of recent results characterizing the (perhaps surprising) asymptotic behavior of these free boundary minimal immersions (and associated Steklov-maximizing metrics) as the number of boundary components becomes large. (Based on joint work with Mikhail Karpukhin.)

## John McCuan : Minimal graphs with jump discontinuities

- Geometry and Topology ( 254 Views )I will discuss some examples of minimal graphs with jump discontinuities in their boundaries. Robert Huff and I constructed these examples in response to a question of John Urbas: Is it possible for a minimal graph over a smooth annular domain to have an isolated jump discontinuity on the inner boundary component? I will also give a brief overview of the boundary consistency problem for Di Giorgi's generalized solutions of the minimal surface equation and discuss this question in that context. The construction of the examples uses the Weierstrass representation and the developing map introduced by Huff in the study of capillary problems.

## Siqi He : Classification of Nahm Pole Solutions to the KW Equations on $S^1\times\Sigma\times R^+$

- Geometry and Topology ( 251 Views )We will discuss Witten??s gauge theory approach to Jones polynomial by counting solutions to the Kapustin-Witten (KW) equations with singular boundary conditions over 4-manifolds. We will give a classification of solutions to the KW equations over $S^1\times\Sigma\times R^+$. We prove that all solutions to the KW equations over $S^1\times\Sigma\times R^+$ are $S^1$ direction invariant and we give a classification of the KW monopole over $\Sigma\times R^+$ based on the Hermitian-Yang-Mills type structure of KW monopole equation. This is based on joint works with Rafe Mazzeo.

## Tye Lidman : Homology cobordisms with no 3-handles

- Geometry and Topology ( 243 Views )Homology cobordisms are a special type of manifold which are relevant to a variety of areas in geometric topology, including knot theory and triangulability. We study the behavior of a variety of invariants under a particular family of four-dimensional homology cobordisms which naturally arise from Stein manifolds. This is joint work with Ali Daemi, Jen Hom, Shea Vela-Vick, and Mike Wong.

## Mark Stern : Instanton Decay

- Geometry and Topology ( 242 Views )The inverse square law is fundamental to our understanding of electromagnetism. The question of the decay of the fields associated to nonabelian gauge theories is more difficult because the equations determining these fields are nonlinear. In this talk, I will discuss recent progress in establishing decay rates for instantons.

## Alex Waldron : Yang-Mills flow on special holonomy manifolds

- Geometry and Topology ( 234 Views )I will describe an upcoming paper with Goncalo Oliveira investigating the properties of Yang-Mills flow on base manifolds with restricted holonomy, generalizing known results from the 4-d and Kahler cases. We show that finite-time blowup is governed by the F^7 component of the curvature in the G_2 and Spin(7) cases, and by the appropriate curvature component in the remaining cases on Berger's list. Assuming that this component remains bounded along the flow, we show that the infinite-time bubbling set is calibrated by the defining (n-4)-form.

## Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set

- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.

## Richard Hain : The Lie Algebra of the Mapping Class Group, Part 1

- Geometry and Topology ( 223 Views )In this talk I will review the construction of the Lie algebra associated to the mapping class group of a (possibly decorated) surface and explain how this generalizes the Lie algebra associated to the pure braid group. I will also explain the analogue of the KZ-equation in the mapping class group case. In the second talk I will discuss filtrations of this Lie algebra associated to curve systems on the surface and their relation to handlebody groups.

## Amit Einav : Entropic Inequality on the Sphere

- Geometry and Topology ( 222 Views )It is an interesting well known fact that the relative entropy with respect to the Gaussian measure on $\mathbb{R}^N$ satisfies a simple subadditivity property. Namely, if $\Pi_1^{(i)}(F_N)$ is the first marginal of the density function F_N in the i-th variable then \begin{equation} \sum_{i=1}^N H(\Pi_1^{(i)}(F_N) | \gamma_1) \leq H(F_N | \gamma_N), \end{equation} where $\gamma_k$ is the standard Gaussian on $\mathbb{R}^k$. Surprisingly enough, when one tries to achieve a similar result on $\mathbb{S}^{N-1}(\sqrt{N})$ a factor of 2 appears in the right hand side of the inequality (a result due to Carlen, Lieb and Loss), and the constant is sharp. Besides a deviation from the simple equivalence of ensembles principle in equilibrium Statistical Mechanics, this entropic inequality on the sphere has interesting ramifications in other fields, such as Kinetic Theory. In this talk we will present conditions on the density function F_N, on the sphere, under which we can get an ?almost? subaditivity property; i.e. the factor 2 can be replaced with a factor of $1+\epsilon_N$, with $\epsilon_N$ given explicitly and going to zero. The main tools to be used in order to proved this result are an entropy conservation extension of F_N to $\mathbb{R}^N$ together with comparison of appropriate transportation distances such as the entropy, Fisher information and Wasserstein distance between the marginal of the original density and that of the extension. Time permitting, we will give an example, one that arises naturally in the investigation of the so-called Kac Model, to many families of functions that satisfy these conditions.

## Curtis Porter : Straightening out degeneracy in CR geometry: When can it be done?

- Geometry and Topology ( 216 Views )CR geometry studies boundaries of domains in C^n and their generalizations. A central role is played by the Levi form L of a CR manifold M, which measures the failure of the CR bundle to be integrable, so that when L has a nontrivial kernel of constant rank, M is foliated by complex manifolds. If the local transverse structure to this foliation still determines a CR manifold N, then we say M is CR-straightenable, and the Tanaka-Chern-Moser classification of CR hypersurfaces with nondegenerate Levi form can be applied to N. It remains to classify those M for which L is degenerate and no such straightening exists. This was accomplished in dimension 5 by Ebenfelt, Isaev-Zaitzev, and Medori-Spiro. I will discuss their results as well as my recent progress on the problem in dimension 7 (http://arxiv.org/abs/1511.04019).

## Shubham Dwivedi : Geometric flows of $G_2$ structures

- Geometry and Topology ( 213 Views )We will start by discussing a flow of isometric $G_2$ structures. We consider the negative gradient flow of the energy functional restricted to the class of $G_2$ structures inducing a given Riemannian metric. We will discuss various analytic aspects of the flow including global and local derivative estimates, a compactness theorem and a monotonicity formula for the solutions. After defining an entropy functional we will prove that low entropy initial data lead to solutions that exist for all time and converge smoothly to a $G_2$ structure with divergence free torsion. We will also discuss finite time singularities and the singular set of the solutions. Finally, we will discuss the isometric flow "coupled? with the Ricci flow of the underlying metric, which again is a flow of $G_2$ structures, and discuss some of its properties. This is a based on two separate joint works with Panagiotis Gianniotis (University of Athens) and Spiro Karigiannis (University of Waterloo).

## Gonçalo Oliveira : Gauge theory on Aloff-Wallach spaces

- Geometry and Topology ( 204 Views )I will describe joint work with Gavin Ball where we classify certain G2-Instantons on Aloff-Wallach spaces. This classification can be used to test ideas and explicitly observe various interesting phenomena. For instance, we can: (1) Vary the underlying structure and find out what happens to the G2-instantons along the way; (2) Distinguish certain G2-structures (called nearly parallel) using G2-Instantons; (3) Find G2-Instantons, with respect to these structures, which are not absolute minima of the Yang-Mills functional.

## Richard Hain : Hodge theory and the Goldman-Turaev Lie bialgebra

- Geometry and Topology ( 203 Views )In the 1980s, Bill Goldman used intersection theory to define
a Lie algebra structure on the free **Z** module *L(X)* generated by the
closed geodesics on a hyperbolic surface *X*. This bracket is related to
a formula for the Poisson bracket of functions on the variety of flat
*G*-bundles over *X*. In related work (1970s and 1990s), Vladimir Turaev
(with contributions by Kawazumi and Kuno in the 2000s) constructed a
cobracket on *L(X)* that depends on the choice of a framing. In this
talk, I will review the definition of the Goldman-Turaev Lie bialgebra
of a framed surface and discuss its relevance to questions in other
areas of mathematics. I'll discuss how Hodge theory can be applied to
these questions. I may also discuss some related questions, such as
the classification of mapping class group orbits of framings of a
punctured surface.

## John Berman : Measuring Ramification with Topological Hochschild Homology

- Geometry and Topology ( 196 Views )Topological Hochschild homology (THH) has recently been popular as an approximation to algebraic K-theory, but it is also a measure of ramification in the sense of number theory. I will survey the interaction between THH and number theory, along with some surprising connections to classical algebraic topology. This will culminate in a new computation of THH of any ring of integers R, suggesting the philosophy: Spec(R) -> Spec(Z) is one point away from being etale.

## Jim Isenberg : Construcing solutions of the Einstein constraint equations

- Geometry and Topology ( 195 Views )The first step in finding a spacetime solution to the Einstein gravitational field equations via the inital value formulation is to construct initial data which satisfy the Einstein constraint equations. There are three ways of carrying out this construction which have been found to be useful: the conformal and conformal thin sandwich methods, the gluing techniques, and the quasi-spherical approaches. We describe each of these, we discuss their advantages and disadvantages, we outline some of their recent successful applications, and we present some of the outstanding questions remaining to be solved from each of these perspectives.

## Jer-Chin Chuang : Subdivisions and Transgressive Chains

- Geometry and Topology ( 192 Views )Combinatorial transgressions are secondary invariants of a space admitting triangulations. They arise from subdivisions and are analogous to transgressive forms such as those in Chern-Weil theory. In this talk, I characterize transgressions that are path-independent of subdivision sequence. The result is obtained by using a cohomology on posets that is shown to be equivalent to higher derived functors of the inverse (or projective) limit over the opposite poset.

## Jason Parsley : Helicity, Configuration Spaces, & Characteristic Classes

- Geometry and Topology ( 191 Views )The helicity of a vector field in R^3, an analog to linking number, measures the extent to which its flowlines coil and wrap around one another. Helicity turns out to be invariant under volume-preserving diffeomorphisms that are isotopic to the identity. Motivated by Bott-Taubes integration, we provide a new proof of this invariance using configuration spaces. We then present a new topological explanation for helicity, as a characteristic class. Among other results, this point of view allows us to completely characterize the diffeomorphisms under which helicity is invariant and give an explicit formula for the change in helicity under a diffeomorphism under which helicity is not invariant. (joint work with Jason Cantarella, U. of Georgia)

## Valentino Tosatti : The Calabi-Yau equation on symplectic four-manifolds

- Geometry and Topology ( 191 Views )Abstract: The Calabi conjecture, proved by Yau thirty years ago, says that on a compact Kahler manifold one can find a unique Kahler metric in every Kahler class with prescribed volume form. Donaldson recently conjectured that this theorem can be extended to symplectic forms with a compatible almost complex structure in 4 dimensions, and gave possible applications to the symplectic topology of 4-manifolds. I will discuss Donaldson's conjecture and some recents developments (joint work with B. Weinkove and partly with S.-T. Yau).

## Michael Eichmair : Non-variational Plateau problems and the spacetime positive mass theorem in general relativity

- Geometry and Topology ( 189 Views )In this talk I will introduce some new ideas to the existence theory for a class of non-variational existence problems arising naturally in geometry and analysis. I will discuss some applications (and potential applications) to positive mass-type and Penrose-type theorems in general relativity.

## Mark Stern : Stability, dynamics, and the quantum Hodge theory of vector bundles

- Geometry and Topology ( 187 Views )I will discuss various approaches to the question: When does a vector bundle admit a holomorphic structure? I will explore applications of Yang-Mills theory, geometric quantization, and discrete dynamics to this problem.

## Lorenzo Foscolo : New G2-holonomy cones and exotic nearly Kähler structures on the 6-sphere and the product of two 3-spheres.

- Geometry and Topology ( 187 Views )Compact 6-dimensional nearly Kähler manifolds are the cross-sections of Riemannian cones with holonomy G2. A long-standing problem has been the question of existence of complete nearly Kähler 6-manifolds besides the four known homogeneous ones. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kähler structures on the 6-sphere and on the product of two 3-spheres. This is joint work with Mark Haskins, Imperial College London.

## Claude LeBrun : Four-Dimensional Einstein Manifolds, and Beyond

- Geometry and Topology ( 181 Views )An Einstein metric is a Riemannian metric of constant Ricci curvature. One of the central problems of modern Riemannian geometry is to determine which smooth compact manifolds admit Einstein metrics. This lecture will explain some recent results concerning the 4-dimensional case of the problem, and then compare and contrast these results with our current understanding of the problem in other dimensions.