Renato Bettiol : Positive biorthogonal curvature in dimension 4
- Geometry and Topology ( 384 Views )A 4-manifold is said to have positive biorthogonal curvature if the average of sectional curvatures of any pair of orthogonal planes is positive. In this talk, I will describe a construction of metrics with positive biorthogonal curvature on the product of spheres, and then combine it with recent surgery stability results of Hoelzel to classify (up to homeomorphism) the closed simply-connected 4-manifolds that admit a metric with positive biorthogonal curvature.
Calvin McPhail-Snyder : Making the Jones polynomial more geometric
- Geometry and Topology ( 370 Views )The colored Jones polynomials are conjectured to detect geometric information about knot complements, such as hyperbolic volume. These relationships ("volume conjectures") are known in a number of special cases but are in general quite mysterious. In this talk I will discuss a program to better understand them by constructing holonomy invariants, which depend on both a knot K and a representation of its knot group into SL_2(C). By defining a version of the Jones polynomial that knows about geometric data, we hope to better understand why the ordinary Jones polynomial does too. Along the way we can obtain more powerful quantum invariants of knots and other topological objects.
Simon Brendle : Singularity formation in geometric flows
- Geometry and Topology ( 309 Views )Geometric evolution equations like the Ricci flow and the mean curvature flow play a central role in differential geometry. The main problem is to understand singularity formation. In this talk, I will discuss recent results which give a complete picture of all the possible limit flows in 2D mean curvature flow with positive mean curvature, and in 3D Ricci flow.
Robert Bryant : The affine Bonnet problem
- Geometry and Topology ( 296 Views )The classical Euclidean problem studied by Bonnet in the 19th century was to determine whether, and in how many ways, a Riemannian surface can be isometrically embedded into Euclidean 3-space so that its mean curvature is a prescribed function. He found that, generically, specifying a metric and mean curvature admitted no solution but that there are special cases in which, not only are there solutions, but there are even 1-parameter families of distinct (i.e., mutually noncongruent) solutions. Much later, these Bonnet surfaces were found to be intimately connected with integrable systems and Lax pairs. In this talk, I will consider the analogous problem in affine geometry: To determine whether, and in how many ways, a surface endowed with a Riemannian metric g and a function H can be immersed into affine 3-space in such a way that the induced Blaschke metric is g and the induced affine mean curvature is H. This affine problem is, in many ways, richer and more interesting than the corresponding Euclidean problem. I will classify the pairs (g,H) that display the greatest flexibility in their solution space and explain what is known about the (suspected) links with integrable systems and Lax pairs.
Viktor Burghardt : The Dual Motivic Witt Cohomology Steenrod Algebra
- Geometry and Topology ( 279 Views )Over a field k, the zeroth homotopy group of the motivic sphere spectrum is given by the Grothendieck-Witt ring of symmetric bilinear forms GW(k). The Grothendieck-Witt ring GW(k) modulo the hyperbolic plane is isomorphic to the Witt ring of symmetric bilinear forms W(k) which further surjectively maps to Z/2. We may take motivic Eilenberg-Maclane spectra of Z/2, W(k) and GW(k). Voevodsky has computed the motivic Steenrod algebra of HZ/2 and solved the Bloch-Kato conjecture with its help. We move one step up in the above picture; we study the motivic Eilenberg-Maclane spectrum corresponding to the Witt ring and compute its dual Steenrod algebra.
Nathan Dowlin : A spectral sequence from Khovanov homology to knot Floer homology
- Geometry and Topology ( 238 Views )Khovanov homology and knot Floer homology are two knot invariants which are defined using very different techniques, with Khovanov homology having its roots in representation theory and knot Floer homology in symplectic geometry. However, they seem to contain a lot of the same topological data about knots. Rasmussen conjectured that this similarity stems from a spectral sequence from Khovanov homology to knot Floer homology. In this talk I will give a construction of this spectral sequence. The construction utilizes a recently defined knot homology theory HFK_2 which provides a framework in which the two theories can be related.
Alex Waldron : Yang-Mills flow on special holonomy manifolds
- Geometry and Topology ( 234 Views )I will describe an upcoming paper with Goncalo Oliveira investigating the properties of Yang-Mills flow on base manifolds with restricted holonomy, generalizing known results from the 4-d and Kahler cases. We show that finite-time blowup is governed by the F^7 component of the curvature in the G_2 and Spin(7) cases, and by the appropriate curvature component in the remaining cases on Berger's list. Assuming that this component remains bounded along the flow, we show that the infinite-time bubbling set is calibrated by the defining (n-4)-form.
Yanir Rubinstein : Einstein metrics on Kahler manifolds
- Geometry and Topology ( 232 Views )The Uniformization Theorem implies that any compact Riemann surface has a constant curvature metric. Kahler-Einstein (KE) metrics are a natural generalization of such metrics, and the search for them has a long and rich history, going back to Schouten, Kahler (30's), Calabi (50's), Aubin, Yau (70's) and Tian (90's), among others. Yet, despite much progress, a complete picture is available only in complex dimension 2. In contrast to such smooth KE metrics, in the mid 90's Tian conjectured the existence of KE metrics with conical singularities along a divisor (i.e., for which the manifold is `bent' at some angle along a complex hypersurface), motivated by applications to algebraic geometry and Calabi-Yau manifolds. More recently, Donaldson suggested a program for constructing smooth KE metrics of positive curvature out of such singular ones, and put forward several influential conjectures. In this talk I will try to give an introduction to Kahler-Einstein geometry and briefly describe some recent work mostly joint with R. Mazzeo that resolves some of these conjectures. One key ingredient is a new C^{2,\alpha} a priori estimate and continuity method for the complex Monge-Ampere equation. It follows that many algebraic varieties that may not admit smooth KE metrics (e.g., Fano or minimal varieties) nevertheless admit KE metrics bent along a simple normal crossing divisor.
Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set
- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.
Jimmy Petean : On the Yamabe invariant of Riemannian products
- Geometry and Topology ( 219 Views )The Yamabe invariant of a closed manifold appears naturally when studying the total scalar curvature functional on the space of Riemannian metrics on the manifold. Computations are difficult, in particular in the positive case (when the manifold admits metrics of positive scalar curvarture, and there is no unicity of metrics of constant scalar curvature on a conformal class). In this talk I will review a little of what is known about the computation of the invariant and discuss some recent joint work with K. Akutagawa and L. Florit on the Yamabe constants of Riemannian products.
Curtis Porter : Straightening out degeneracy in CR geometry: When can it be done?
- Geometry and Topology ( 216 Views )CR geometry studies boundaries of domains in C^n and their generalizations. A central role is played by the Levi form L of a CR manifold M, which measures the failure of the CR bundle to be integrable, so that when L has a nontrivial kernel of constant rank, M is foliated by complex manifolds. If the local transverse structure to this foliation still determines a CR manifold N, then we say M is CR-straightenable, and the Tanaka-Chern-Moser classification of CR hypersurfaces with nondegenerate Levi form can be applied to N. It remains to classify those M for which L is degenerate and no such straightening exists. This was accomplished in dimension 5 by Ebenfelt, Isaev-Zaitzev, and Medori-Spiro. I will discuss their results as well as my recent progress on the problem in dimension 7 (http://arxiv.org/abs/1511.04019).
Luca Di Cerbo : Seiberg-Witten equations on manifolds with cusps and geometric applications.
- Geometry and Topology ( 214 Views )In this talk, I will discuss the Seiberg-Witten equations on finite volume Riemannian manifolds which are diffeomorphic to the product of two hyperbolic Riemann surfaces of finite topological type. Finally, using a Seiberg-Witten scalar curvature estimate I will present several results concerning the Riemannian geometry of these spaces.
Shubham Dwivedi : Geometric flows of $G_2$ structures
- Geometry and Topology ( 213 Views )We will start by discussing a flow of isometric $G_2$ structures. We consider the negative gradient flow of the energy functional restricted to the class of $G_2$ structures inducing a given Riemannian metric. We will discuss various analytic aspects of the flow including global and local derivative estimates, a compactness theorem and a monotonicity formula for the solutions. After defining an entropy functional we will prove that low entropy initial data lead to solutions that exist for all time and converge smoothly to a $G_2$ structure with divergence free torsion. We will also discuss finite time singularities and the singular set of the solutions. Finally, we will discuss the isometric flow "coupled” with the Ricci flow of the underlying metric, which again is a flow of $G_2$ structures, and discuss some of its properties. This is a based on two separate joint works with Panagiotis Gianniotis (University of Athens) and Spiro Karigiannis (University of Waterloo).
Gonçalo Oliveira : Gauge theory on Aloff-Wallach spaces
- Geometry and Topology ( 204 Views )I will describe joint work with Gavin Ball where we classify certain G2-Instantons on Aloff-Wallach spaces. This classification can be used to test ideas and explicitly observe various interesting phenomena. For instance, we can: (1) Vary the underlying structure and find out what happens to the G2-instantons along the way; (2) Distinguish certain G2-structures (called nearly parallel) using G2-Instantons; (3) Find G2-Instantons, with respect to these structures, which are not absolute minima of the Yang-Mills functional.
Richard Hain : Hodge theory and the Goldman-Turaev Lie bialgebra
- Geometry and Topology ( 203 Views )In the 1980s, Bill Goldman used intersection theory to define a Lie algebra structure on the free Z module L(X) generated by the closed geodesics on a hyperbolic surface X. This bracket is related to a formula for the Poisson bracket of functions on the variety of flat G-bundles over X. In related work (1970s and 1990s), Vladimir Turaev (with contributions by Kawazumi and Kuno in the 2000s) constructed a cobracket on L(X) that depends on the choice of a framing. In this talk, I will review the definition of the Goldman-Turaev Lie bialgebra of a framed surface and discuss its relevance to questions in other areas of mathematics. I'll discuss how Hodge theory can be applied to these questions. I may also discuss some related questions, such as the classification of mapping class group orbits of framings of a punctured surface.
Christina Tonnesen-Friedman : Canonical classes on admissible bundles
- Geometry and Topology ( 203 Views )For each K¨ahler class on a compact K¨ahler manifold there is a lower bound of the Calabi functional, which we call the ``potential energy''. Fixing the volume and letting the K¨ahler classes vary, the energy defines a functional which may be studied in it?s own right. Any critical point of the energy functional is then a K¨ahler class whose extremal K¨ahler metrics (if any) are so-called strongly extremal metrics. We take the well-studied case of Hirzebruch surfaces and generalize it in two different directions; along the dimension of the base and along the genus of the base. In the latter situation we are able to give a very concrete description of the corresponding dynamical system (as defined first by S. Simanca and L. Stelling). The talk is based on work in progress with Santiago Simanca.
Kristen Hendricks : Periodic Knots and Heegaard Floer Homology
- Geometry and Topology ( 198 Views )We introduce periodic knots and discuss two classical results concerning their geometry, namely Murasugi's condition on the Alexander polynomial and Edmonds' condition on the genus. We then show how spectral sequences in Heegaard Floer link homology can be used to give a generalization of these two results in the case of doubly-periodic knots.
Yu Pan : Exact Lagrangian cobordisms and the augmentation category
- Geometry and Topology ( 196 Views )To a Legendrian knot, one can associate an $A_{\infty}$ category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor of the augmentation categories of the two knots. We study the functor and establish a long exact sequence relating the corresponding cohomology of morphisms of the two ends. As applications, we prove that the functor between augmentation categories is injective on the level of equivalence classes of objects and find new obstructions to the existence of exact Lagrangian cobordisms in terms of linearized contact homology and ruling polynomials.
Jim Isenberg : Construcing solutions of the Einstein constraint equations
- Geometry and Topology ( 195 Views )The first step in finding a spacetime solution to the Einstein gravitational field equations via the inital value formulation is to construct initial data which satisfy the Einstein constraint equations. There are three ways of carrying out this construction which have been found to be useful: the conformal and conformal thin sandwich methods, the gluing techniques, and the quasi-spherical approaches. We describe each of these, we discuss their advantages and disadvantages, we outline some of their recent successful applications, and we present some of the outstanding questions remaining to be solved from each of these perspectives.
Jer-Chin Chuang : Subdivisions and Transgressive Chains
- Geometry and Topology ( 192 Views )Combinatorial transgressions are secondary invariants of a space admitting triangulations. They arise from subdivisions and are analogous to transgressive forms such as those in Chern-Weil theory. In this talk, I characterize transgressions that are path-independent of subdivision sequence. The result is obtained by using a cohomology on posets that is shown to be equivalent to higher derived functors of the inverse (or projective) limit over the opposite poset.
Lee Deville : Synchrony vs. Asynchrony due to Large Deviations in Stochastic Neuronal Networks
- Geometry and Topology ( 191 Views )We consider idealized stochastic models for a network of pulse-coupled oscillators where there is randomness both in input and in network architecture. We describe the various types of dynamics which arise in this system, analyze scalings which arise in the infinite-network limit, and study the various "finite-size" effects as perturbations of these limits. Most notably, the networks we consider can simultaneously support both synchronous and asynchronous modes of behavior and will switch stochastically between these modes due to "rare events". We also relate the analysis of certain scaling limits of this network to classical graph-theoretical results involving the size of components in the Erdos-Renyi random graph. This work is joint with Charles Peskin and Joel Spencer.
Jason Parsley : Helicity, Configuration Spaces, & Characteristic Classes
- Geometry and Topology ( 191 Views )The helicity of a vector field in R^3, an analog to linking number, measures the extent to which its flowlines coil and wrap around one another. Helicity turns out to be invariant under volume-preserving diffeomorphisms that are isotopic to the identity. Motivated by Bott-Taubes integration, we provide a new proof of this invariance using configuration spaces. We then present a new topological explanation for helicity, as a characteristic class. Among other results, this point of view allows us to completely characterize the diffeomorphisms under which helicity is invariant and give an explicit formula for the change in helicity under a diffeomorphism under which helicity is not invariant. (joint work with Jason Cantarella, U. of Georgia)
Colleen Robles : A refinement of the Lefschetz decomposition for hyperkahler manifolds
- Geometry and Topology ( 191 Views )The cohomology (with complex coefficients) of a compact kahler manifold M admits an action of the algebra sl(2,C), and this action plays an essential role in the analysis of the cohomology. In the case that M is a hyperkahler manifold Verbitsky and Looijenga—Lunts showed there is a family of such sl(2,C)’s generating an algebra isomorphic to so(4,b_2-2), and this algebra similarly can tell us quite a bit about the cohomology of the hyperkahler. I will describe some results of this nature for both the Hodge numbers and Nagai’s conjecture on the nilpotent logarithm of monodromy arising from a degeneration. This is joint work with Mark Green, Radu Laza and Yoonjoo Kim.
Valentino Tosatti : The Calabi-Yau equation on symplectic four-manifolds
- Geometry and Topology ( 191 Views )Abstract: The Calabi conjecture, proved by Yau thirty years ago, says that on a compact Kahler manifold one can find a unique Kahler metric in every Kahler class with prescribed volume form. Donaldson recently conjectured that this theorem can be extended to symplectic forms with a compatible almost complex structure in 4 dimensions, and gave possible applications to the symplectic topology of 4-manifolds. I will discuss Donaldson's conjecture and some recents developments (joint work with B. Weinkove and partly with S.-T. Yau).
Michael Eichmair : Non-variational Plateau problems and the spacetime positive mass theorem in general relativity
- Geometry and Topology ( 189 Views )In this talk I will introduce some new ideas to the existence theory for a class of non-variational existence problems arising naturally in geometry and analysis. I will discuss some applications (and potential applications) to positive mass-type and Penrose-type theorems in general relativity.
Lorenzo Foscolo : New G2-holonomy cones and exotic nearly Kähler structures on the 6-sphere and the product of two 3-spheres.
- Geometry and Topology ( 187 Views )Compact 6-dimensional nearly Kähler manifolds are the cross-sections of Riemannian cones with holonomy G2. A long-standing problem has been the question of existence of complete nearly Kähler 6-manifolds besides the four known homogeneous ones. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kähler structures on the 6-sphere and on the product of two 3-spheres. This is joint work with Mark Haskins, Imperial College London.
Dmitri Burago : Math Mozaic
- Geometry and Topology ( 185 Views )The lecture includes the main part (to be chosen on the spot) and a few mini-talks with just definitions, motivations, some ideas of proofs, and open problems. I will discuss some (hardly all) of the following topics. 1. A survival guide for feeble fish. How fish can get from A to B in turbulent waters which maybe much fasted than the locomotive speed of the fish provided that there is no large-scale drift of the water flow. This is related to homogenization of G-equation which is believed to govern many combustion processes. Based on a joint work with S. Ivanov and A. Novikov. 2. One of the greatest achievements in Dynamics in the XX century is the KAM Theory. It says that a small perturbation of a non-degenerate completely integrable system still has an overwhelming measure of invariant tori with quasi-periodic dynamics. What happens outside KAM tori has been remaining a great mystery. The main quantitate invariants so far are entropies. It is easy, by modern standards, to show that topological entropy can be positive. It lives, however, on a zero measure set. We are now able to show that metric entropy can become infinite too, under arbitrarily small C^{infty} perturbations, answering an old-standing problem of Kolmogorov.. Furthermore, a slightly modified construction resolves another longstanding problem of the existence of entropy non-expansive systems. In these modified examples positive positive metric entropy is generated in arbitrarily small tubular neighborhood of one trajectory. Join with S. Ivanov and Dong. Chen. 3. What is inside? Imagine a body with some intrinsic structure, which, as usual, can be thought of as a metric. One knows distances between boundary points (say, by sending waves and measuring how long it takes them to reach specific points on the boundary). One may think of medical imaging or geophysics. This topic is related to minimal fillings and surfaces in normed spaces. Joint work with S. Ivanov. 4. How well can we approximate an (unbounded) space by a metric graph whose parameters (degree of vertices, length of edges, density of vertices etc) are uniformly bounded? We want to control the ADDITIVE error. Some answers (the most difficult one is for $\R^2$) are given using dynamics and Fourier series. Joint with Ivanov. 5.How can one discretize elliptic PDEs without using finite elements, triangulations and such? On manifolds and even reasonably nice mmspaces. A notion of \rho-Laplacian and its stability. Joint with S. Ivanov and Kurylev. 6. A solution of Busemanns problem on minimality of surface area in normed spaces for 2-D surfaces (including a new formula for the area of a convex polygon). Joint with S. Ivanov.
Lev Rozansky : A categorification of the stable Witten-Reshetikhin-Turaev invariant of links in S2 x S1
- Geometry and Topology ( 182 Views )This work was done in close collaboration with M. Khovanov. The Witten-Reshetikhin-Turaev invariant Z(M,L;r) of a link L in a 3-manifold M is a seemingly random function of an integer r. However, for a small class of 3-manifolds constructed by identical gluing of two handlebodies (e.g., for S3 and for S2 x S1) and for sufficiently large values of r the ratio Z(M,L;r)/Z(M;r) is equal to a rational function J(M,L;q) of q evaluated at the first 2r-th root of unity. If M = S3, then J is the Jones polynomial. Khovanov categorified J(S3,L), that is, to a link L in S3 he assigned a homology H(L) with an extra Z-grading such that its graded Euler characteristic equals J(S3,L). We extend Khovanov's construction to links in S2 x S1 thus categorifying J(S2xS1,L). In his work on categorification of the Jones polynomial, Khovanov introduced special algebras H_n and assigned a H_m x H_n module to every (2m,2n)-tangle. We show that if a link L in S2 x S1 is presented as a closure of a (2n,2n)-tangle, then the Hochschild homology of its H_n bimodule is determined by the link itself and serves as a categorificaiton of J(S2xS1,L). Moreover, we show that this Hochschild homology can be approximated by Khovanov homology of the circular closure of the tangle within S3 by a high twist torus braid, thus providing a practical method of its computation.
Jonathan Hanselman : The cosmetic surgery conjecture and Heegaard Floer homology
- Geometry and Topology ( 181 Views )The cosmetic surgery conjecture states that no two surgeries on a given knot produce the same 3-manifold (up to orientation preserving diffeomorphism). Floer homology has proved to be a powerful tool for approaching this problem; I will survey partial results that are known and then show that these results can be improved significantly. If a knot in S^3 admits purely cosmetic surgeries, then the surgery slopes are +/- 2 or +/- 1/q, and for any given knot we can give an upper bound for q in terms of the Heegaard Floer thickness. In particular, for any knot there are at most finitely many potential pairs of cosmetic surgery slopes. With the aid of computer computation we show that the conjecture holds for all knots with at most 15 crossings.