Daniel Stern : Scalar curvature and circle-valued harmonic maps
- Uploaded by root ( 158 Views )We introduce a new tool for relating the scalar curvature of a Riemannian manifold to its global geometry and topology, based on the study of level sets of harmonic functions and harmonic maps to the circle. We will explain how these ideas lead to simple new proofs and improvements upon some well-known results in three-manifold geometry and general relativity, previously studied primarily via minimal surface and Dirac operator methods.
Florian Johne : A generalization of Gerochs conjecture
- Uploaded by schrett ( 52 Views )Closed manifolds with topology N = M x S^1 do not admit metrics of positive Ricci curvature by the theorem of Bonnet-Myers, while the resolution of the Geroch conjecture implies that the torus T^n does not admit a metric of positive scalar curvature. In this talk we explain a non-existence result for metrics of positive m-intermediate curvature (a notion of curvature reducing to Ricci curvature for m = 1, and scalar curvature for m = n-1) on closed manifolds with topology N^n = M^{n-m} x T^m for n <= 7. Our proof uses minimization of weighted areas, the associated stability inequality, and delicate estimates on the second fundamental form. This is joint work with Simon Brendle and Sven Hirsch.