## Yanir Rubinstein : Einstein metrics on Kahler manifolds

- Geometry and Topology ( 229 Views )The Uniformization Theorem implies that any compact Riemann surface has a constant curvature metric. Kahler-Einstein (KE) metrics are a natural generalization of such metrics, and the search for them has a long and rich history, going back to Schouten, Kahler (30's), Calabi (50's), Aubin, Yau (70's) and Tian (90's), among others. Yet, despite much progress, a complete picture is available only in complex dimension 2. In contrast to such smooth KE metrics, in the mid 90's Tian conjectured the existence of KE metrics with conical singularities along a divisor (i.e., for which the manifold is `bent' at some angle along a complex hypersurface), motivated by applications to algebraic geometry and Calabi-Yau manifolds. More recently, Donaldson suggested a program for constructing smooth KE metrics of positive curvature out of such singular ones, and put forward several influential conjectures. In this talk I will try to give an introduction to Kahler-Einstein geometry and briefly describe some recent work mostly joint with R. Mazzeo that resolves some of these conjectures. One key ingredient is a new C^{2,\alpha} a priori estimate and continuity method for the complex Monge-Ampere equation. It follows that many algebraic varieties that may not admit smooth KE metrics (e.g., Fano or minimal varieties) nevertheless admit KE metrics bent along a simple normal crossing divisor.

## Richard Hain : The Lie Algebra of the Mapping Class Group, Part 1

- Geometry and Topology ( 220 Views )In this talk I will review the construction of the Lie algebra associated to the mapping class group of a (possibly decorated) surface and explain how this generalizes the Lie algebra associated to the pure braid group. I will also explain the analogue of the KZ-equation in the mapping class group case. In the second talk I will discuss filtrations of this Lie algebra associated to curve systems on the surface and their relation to handlebody groups.

## Yu Pan : Exact Lagrangian cobordisms and the augmentation category

- Geometry and Topology ( 194 Views )To a Legendrian knot, one can associate an $A_{\infty}$ category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor of the augmentation categories of the two knots. We study the functor and establish a long exact sequence relating the corresponding cohomology of morphisms of the two ends. As applications, we prove that the functor between augmentation categories is injective on the level of equivalence classes of objects and find new obstructions to the existence of exact Lagrangian cobordisms in terms of linearized contact homology and ruling polynomials.

## Jer-Chin Chuang : Subdivisions and Transgressive Chains

- Geometry and Topology ( 191 Views )Combinatorial transgressions are secondary invariants of a space admitting triangulations. They arise from subdivisions and are analogous to transgressive forms such as those in Chern-Weil theory. In this talk, I characterize transgressions that are path-independent of subdivision sequence. The result is obtained by using a cohomology on posets that is shown to be equivalent to higher derived functors of the inverse (or projective) limit over the opposite poset.

## Jason Parsley : Helicity, Configuration Spaces, & Characteristic Classes

- Geometry and Topology ( 189 Views )The helicity of a vector field in R^3, an analog to linking number, measures the extent to which its flowlines coil and wrap around one another. Helicity turns out to be invariant under volume-preserving diffeomorphisms that are isotopic to the identity. Motivated by Bott-Taubes integration, we provide a new proof of this invariance using configuration spaces. We then present a new topological explanation for helicity, as a characteristic class. Among other results, this point of view allows us to completely characterize the diffeomorphisms under which helicity is invariant and give an explicit formula for the change in helicity under a diffeomorphism under which helicity is not invariant. (joint work with Jason Cantarella, U. of Georgia)

## Lee Deville : Synchrony vs. Asynchrony due to Large Deviations in Stochastic Neuronal Networks

- Geometry and Topology ( 187 Views )We consider idealized stochastic models for a network of pulse-coupled oscillators where there is randomness both in input and in network architecture. We describe the various types of dynamics which arise in this system, analyze scalings which arise in the infinite-network limit, and study the various "finite-size" effects as perturbations of these limits. Most notably, the networks we consider can simultaneously support both synchronous and asynchronous modes of behavior and will switch stochastically between these modes due to "rare events". We also relate the analysis of certain scaling limits of this network to classical graph-theoretical results involving the size of components in the Erdos-Renyi random graph. This work is joint with Charles Peskin and Joel Spencer.

## Michael Eichmair : Non-variational Plateau problems and the spacetime positive mass theorem in general relativity

- Geometry and Topology ( 187 Views )In this talk I will introduce some new ideas to the existence theory for a class of non-variational existence problems arising naturally in geometry and analysis. I will discuss some applications (and potential applications) to positive mass-type and Penrose-type theorems in general relativity.

## Mark Stern : Stability, dynamics, and the quantum Hodge theory of vector bundles

- Geometry and Topology ( 186 Views )I will discuss various approaches to the question: When does a vector bundle admit a holomorphic structure? I will explore applications of Yang-Mills theory, geometric quantization, and discrete dynamics to this problem.

## Lev Rozansky : A categorification of the stable Witten-Reshetikhin-Turaev invariant of links in S2 x S1

- Geometry and Topology ( 181 Views )This work was done in close collaboration with M. Khovanov. The Witten-Reshetikhin-Turaev invariant Z(M,L;r) of a link L in a 3-manifold M is a seemingly random function of an integer r. However, for a small class of 3-manifolds constructed by identical gluing of two handlebodies (e.g., for S3 and for S2 x S1) and for sufficiently large values of r the ratio Z(M,L;r)/Z(M;r) is equal to a rational function J(M,L;q) of q evaluated at the first 2r-th root of unity. If M = S3, then J is the Jones polynomial. Khovanov categorified J(S3,L), that is, to a link L in S3 he assigned a homology H(L) with an extra Z-grading such that its graded Euler characteristic equals J(S3,L). We extend Khovanov's construction to links in S2 x S1 thus categorifying J(S2xS1,L). In his work on categorification of the Jones polynomial, Khovanov introduced special algebras H_n and assigned a H_m x H_n module to every (2m,2n)-tangle. We show that if a link L in S2 x S1 is presented as a closure of a (2n,2n)-tangle, then the Hochschild homology of its H_n bimodule is determined by the link itself and serves as a categorificaiton of J(S2xS1,L). Moreover, we show that this Hochschild homology can be approximated by Khovanov homology of the circular closure of the tangle within S3 by a high twist torus braid, thus providing a practical method of its computation.

## Alexander Volkmann : Nonlinear mean curvature flow with Neumann boundary condition

- Geometry and Topology ( 178 Views )Using a level set formulation and elliptic regularization we define a notion of weak solutions of nonlinear mean curvature flow with Neumann boundary condition. We then outline the proof of an existence result for the weak level set flow. Finally, we discuss some geometric applications of this flow.

## Zheng Zhang : On motivic realizations for variations of Hodge structure of Calabi-Yau type over Hermitian symmetric domains

- Geometry and Topology ( 176 Views )Based on the work of Gross and Sheng-Zuo, Friedman and Laza have classified variations of real Hodge structure of Calabi-Yau type over Hermitian symmetric domains. In particular, over every irreducible Hermitian symmetric domain there exists a canonical variation of real Hodge structure of Calabi-Yau type. In this talk, we wil review Friedman and Lazas classification. A natural question to ask is whether the canonical Hermitian variations of Hodge structure of Calabi-Yau type come from families of Calabi-Yau manifolds (geometric realization). In general, this is very difficult and is still open for small dimensional domains. We will discuss an intermediate question, namely does the canonical variations occur in algebraic geometry as sub-variations of Hodge structure of those coming from families of algebraic varieties (motivic realization). In particular, we will give motivic realizations for the canonical variations of Calabi-Yau type over irreducible tube domains of type A using abelian varieties of Weil type.

## Thomas Walpuski : G2instantons over twisted connected sums

- Geometry and Topology ( 176 Views )In joint work with H. Sá Earp we introduced a method to construct G2instantons over compact G2manifolds arising as the twisted connected sum of a matching pair of building blocks. I will recall some of the background (including the twisted connected sum construction and a short discussion as to why one should care about G2instantons), discuss our main result and explain how to interpret it in terms of certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface. If time permits, I will discuss an idea to construct the input required by our gluing theorem.

## Mark Stern : Geometry of stable Yang-Mills connections

- Geometry and Topology ( 173 Views )On a compact 4-manifold, every self-dual connection and every anti-self-dual connection minimizes the Yang-Mills energy. In this talk, I will answer the converse question for compact homogeneous 4-manifolds. I will also survey related stability results in other dimensions.

## Vestislav Apostolov : Old and new trends in Bihermitian geometry

- Geometry and Topology ( 170 Views )A bihermitian structure is a Riemannian metric compatible with two distinct orthogonal complex structures. In the mathematical literature this notion appeared in 90's in the study of the curvature of conformal 4-manifolds. However, bihermitian metrics were already studied in the physics literature in the 80's, as a building bloc of what Gates, Hull and Rocek call `the target space for a (2,2) super-symmetric sigma model'. There has been a great deal of interest in bihermitian geometry more recently, motivated by its link with the notion of generalized Kaehler geometry, introduced by Gualtieri and Hitchin. In this talk I will explain some main features of 4-dimensional bihermitian manifolds, as developed in the 90's, and report on recent classification results that I obtained with M. Gualtieri and G. Dloussky.

## Vera Vértesi : Knots in contact 3--manifolds

- Geometry and Topology ( 167 Views )In this talk I will give a purely combinatorial description of Knot Floer Homology for knots in the three-sphere (Manolescu-Ozsváth-Szabó-Thurston). In this homology there is a naturally associated invariant for transverse knots. This invariant gives a combinatorial but still an effective way to distinguish transverse knots (Ng-Ozsváth-Thurston). Moreover it leads to the construction of an infinite family of non-transversely simple knot-types (Vértesi).

## Ken Jackson : Numerical Methods for the Valuation of Synthetic Collateralized Debt Obligations (CDOs)

- Geometry and Topology ( 165 Views )Our numerical computation group has studied several problems in computational finance over the past decade. One that we've looked at recently is the pricing of "collateralized debt obligations" (CDOs). The market for CDOs has grown rapidly to over US$1 trillion annually in 2006, since the appearance of JP Morgan's Bistro deal, the first synthetic CDO, in December 1997. Much of the turmoil in the financial markets recently has been due to such credit derivatives. As this suggests, there are still many open problems associated with the pricing and hedging of these complex financial instruments. I will talk briefly about some work that we have done recently in this area.

## Zhou Zhang : Volume Form and Scalar Curvature for K\ahler-Ricci Flow over General Type Manifold

- Geometry and Topology ( 163 Views )It is an interesting project guided by Tian's conjecture to use K\"ahler-Ricci flow with changing cohomology class in the study of general type manifold. The locally smooth convergence leaves quite some freedom for the global geometry. Meanwhile, volume form and scalar curvature have shown different behavior in infinite and finite time cases.

## Simon Brendle : Minimal Lagrangian diffeomorphisms between domains in the hyperbolic plane

- Geometry and Topology ( 162 Views )Let $\Omega$ and $\tilde{\Omega}$ be domains in the hyperbolic plane with smooth boundary. Assume that both domains are uniformly convex, and have the same area. We show that there exists an area-preserving, orientation-preserving diffeomorphism $f: \Omega \to \tilde{\Omega}$ such that the graph of $f$ is a minimal surface in $\mathbb{H}^2 \times \mathbb{H}^2$. Moreover, we show that the set of all such diffeomorphisms is parametrized by the circle.

## Fernando Schwartz : On the topology of black holes

- Geometry and Topology ( 158 Views )An important special case of the general construction of black holes translates into a problem in Riemannian geometry, since a totally geodesic slice of spacetime is an asymptotically flat Riemannian manifold with nonnegative scalar curvature, and the restriction of the event horizon to the slice is the apparent horizon in the slice. In this talk we show how to construct new examples of Riemannian manifolds with nonspherical apparent horizon, in dimensions four and above. More precisely, for any $n,m\ge 1$, we construct asymptotically flat, scalar flat Riemannian manifolds with apparent horizon that is a smooth outermost minimal hypersurface with topology $S^n\times S^{m+1}$.

## Anda Degeratu : Analysis on crepant resolutions of Calabi-Yau orbifolds

- Geometry and Topology ( 156 Views )A Calabi-Yau orbifold is locally modeled on C^n/G with G a finite subgroup of SU(n). If the singularity is isolated, then the crepant resolution (if it exists) is an ALE manifold, for which index-type results are well known. However, most of the time the singularity is not isolated, and for the corresponding crepant resolution there is no index theorem so far. In this talk, I present the first step towards obtaining such a result: I will introduce the class of iterated cone-edge singular manifolds and the corresponding quasi-asymptotically conical spaces (of which orbifolds and their resolutions of singularities are examples), and build-up the general set-up for studying Fredholm properties of geometrical elliptic operators on these spaces. This is joint work with Rafe Mazzeo.

## Justin Sawon : Lagrangian fibrations by Jacobians of low genus curves

- Geometry and Topology ( 156 Views )The Beauville-Mukai integrable system is a well-known Lagrangian fibration, i.e., a holomorphic symplectic manifold fibred by Lagrangian complex tori. It is constructed by beginning with a complete linear system of curves on a K3 surface, and then taking the compactified relative Jacobian of the family of curves. One may ask whether other families of curves yield Lagrangian fibrations in this way. Markushevich showed that this is not the case in genus two: a Lagrangian fibration by Jacobians of genus two curves must be a Beauville-Mukai system. We generalize his result to genus three curves, and also to non-hyperelliptic curves of genus four and five.

## Emma Carberry : Conformal Surface Geometry: an algebro-geometric approach.

- Geometry and Topology ( 155 Views )A number of classical integrable systems, for example harmonic maps of the plane to a compact Lie group or symmetric space, can be transformed into a \{\\em linear\} flow on a complex torus. This torus is the Jacobian of an algebraic curve, called the spectral curve. Recently several authors have produced an analogous one-dimensional analytic variety for conformal 2-tori in $S4$ (which are not in general integrable!) using the geometry of the quaternions. It is hoped that this new development will lead to progress on the Willmore conjecture for reasons that I will explain. However this variety is at present quite mysterious; very little is known about it. I will discuss the simplest case, namely constant mean curvature tori in $\mathbb{R}3$. I will demonstrate that in this case the variety is not at all mysterious and interpret its points geometrically in terms of transformations generalising the classical transform of Darboux. This is joint work with Katrin Leschke and Franz Pedit.

## Vladimir Matveev : Geodesically equivalent metrics in the large: Beltrami and Schouten problems.

- Geometry and Topology ( 154 Views )Two metrics are geodesically equivalent if they have the same (unparameterized) geodesics. During my talk I describe geodesically equivalent metrics on closed manifolds (which is an answer to Beltrami's question) and explain the proof of Lichnerowicz-Obata conjecture (which is an answer on the infinitesimal version of the Beltrami question known as Schouten problem).

## Jacques Hurtubise : Isomonodromy deformations of connections

- Geometry and Topology ( 152 Views )The link between meromorphic connections on a Riemann surface and their monodromy is a very classical one, indeed so classical that it was the subject of one of Hilbert?s problems. The deformation theory of these connections, and when these deformations preserve the monodromy, is almost equally ancient. I will give an overview of some results in the area, some ancient, and some quite recent.

## Dan Rutherford : Generating families and invariants of Legendrian knots

- Geometry and Topology ( 150 Views )Legendrian knots in standard contact R3 have in addition to their topological knot type two classical invariants known as the Thurston-Bennequin and rotation numbers. Over the past decade several invariants have been developed which are capable of distinguishing between knots with identical classical invariants. The purpose of this talk is to describe interesting relationships between some of these new invariants. Major players in this talk are the Chekanov-Eliashberg DGA (Legendrian contact homology) and related objects, as well as combinatorial structures on front diagrams and homological invariants arising from the theory of generating families (due to Chekanov-Pushkar, Fuchs, and Traynor). The main new result (joint with Fuchs) is that, when a Legendrian knot is defined by a generating family, homology groups obtained by linearizing the Chekanov-Eliashberg DGA are isomorphic to the homology of a pair of spaces associated with the generating family.

## Paul Norbury : Magnetic monopoles on manifolds with boundary

- Geometry and Topology ( 150 Views )Kapustin and Witten introduced interesting boundary value problems for magnetic monopoles on a Riemann surface times an interval. They described the moduli space of such solutions in terms of Hecke modifications of holomorphic bundles over the Riemann surface. I will explain this and prove existence and uniqueness for such monopoles.

## Larry Guth : Area-contracting maps between rectangles

- Geometry and Topology ( 150 Views )The k-dilation of a map measures how much the map stretches k-dimensional volumes. The 1-dilation is the usual Lipschitz constant. We consider the problem of finding the smallest k-dilation among all degree 1 maps from one rectangle to another rectangle. (These are n-dimensional rectangles.) In general the linear map is far from optimal.

## Aaron Naber : Orbifold Regularity of Collapsed Spaces and applications to Einstein Manifolds.

- Geometry and Topology ( 150 Views )Let (M_i,g_i) be a sequence of Riemannian n-manifolds with uniformly bounded curvature such that (M_i,g_i)->(X,d), a metric space, in the Gromov Hausdorff sense. Then we show that there is a closed subset S of X with codimension at least 3 and dimension at most n-5 such that X-S is a Riemannian Orbifold. We use this and an \epsilon-regularity theorem to show that metric spaces in the closure of the moduli space of Einstein 4-manifolds are Riemannian Orbifolds away from a finite number of points. This is joint with G. Tian.

## Mark Stern : Introduction to nonlinear harmonic forms.

- Geometry and Topology ( 150 Views )We motivate and introduce nonlinear harmonic forms. These are de Rham representatives $z$ of cohomology classes which minimize the energy $\|z\|_{L_2}^2$ subject to a nonlinear constraint. We give basic existence results for quadratic constraints, discuss the rich Euler Lagrange equations, and ask many regularity questions.