## Yang Li : On the Donaldson-Scaduto conjecture

- Geometry and Topology ( 708 Views )Motivated by G2-manifolds with coassociative fibrations in the adiabatic limit, Donaldson and Scaduto conjectured the existence of associative submanifolds homeomorphic to a three-holed 3-sphere with three asymptotically cylindrical ends in X \times R^3, where X is an A2-type ALE hyperkähler manifold. We prove this conjecture by solving a real Monge-Ampère equation with singular right hand side. The method produces many other asymptotically cylindrical U(1)-invariant special Lagrangians in X \times R^2, where X arises from the Gibbons-Hawking construction. This is joint work in progress with Saman Habibi Esfahani.

## Demetre Kazaras : If Ricci is bounded below, then mass is in control!

- Geometry and Topology ( 553 Views )The ADM mass of an isolated gravitational system is a geometric invariant measuring the total mass due to matter and other fields. In a previous work, we showed how to compute this invariant (in 3 spatial dimensions) by studying harmonic functions. Now I'll use this formula to consider the question: How flat is an asymptotically flat manifold with very little total mass? In the presence of a lower bound on Ricci curvature, we make progress on this question and confirm special cases of conjectures made by Ilmanen and Sormani.

## Calvin McPhail-Snyder : Making the Jones polynomial more geometric

- Geometry and Topology ( 370 Views )The colored Jones polynomials are conjectured to detect geometric information about knot complements, such as hyperbolic volume. These relationships ("volume conjectures") are known in a number of special cases but are in general quite mysterious. In this talk I will discuss a program to better understand them by constructing holonomy invariants, which depend on both a knot K and a representation of its knot group into SL_2(C). By defining a version of the Jones polynomial that knows about geometric data, we hope to better understand why the ordinary Jones polynomial does too. Along the way we can obtain more powerful quantum invariants of knots and other topological objects.

## Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.

- Geometry and Topology,Uploaded Videos ( 315 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.

## Luca Di Cerbo : Extended Graph Manifolds, Dehn Fillings, and Einstein Metrics

- Geometry and Topology ( 301 Views )In this talk, I will present some new topological obstructions for solving the Einstein equations (in Riemannian signature) on a large class of closed four-manifolds. Finally, I will show that complex-hyperbolic Einstein Dehn filling compactification cannot possibly performed in dimension four. This is in striking contrast with the real-hyperbolic case, and it answers (negatively) a fifteen years old question of Michael Anderson. If time permits, I will conclude with some tantalizing open problems both in dimension four and in higher dimensions. Part of this work is joint with M. Golla (Universit\??e de Nantes).

## Robert Bryant : The affine Bonnet problem

- Geometry and Topology ( 296 Views )The classical Euclidean problem studied by Bonnet in the 19th century was to determine whether, and in how many ways, a Riemannian surface can be isometrically embedded into Euclidean 3-space so that its mean curvature is a prescribed function. He found that, generically, specifying a metric and mean curvature admitted no solution but that there are special cases in which, not only are there solutions, but there are even 1-parameter families of distinct (i.e., mutually noncongruent) solutions. Much later, these ?Bonnet surfaces? were found to be intimately connected with integrable systems and Lax pairs. In this talk, I will consider the analogous problem in affine geometry: To determine whether, and in how many ways, a surface endowed with a Riemannian metric g and a function H can be immersed into affine 3-space in such a way that the induced Blaschke metric is g and the induced affine mean curvature is H. This affine problem is, in many ways, richer and more interesting than the corresponding Euclidean problem. I will classify the pairs (g,H) that display the greatest flexibility in their solution space and explain what is known about the (suspected) links with integrable systems and Lax pairs.

## Curtis Porter : Spinning Black Holes and CR 3-Folds

- Geometry and Topology ( 276 Views )Some physically significant solutions to Einstein's field equations are spacetimes which are foliated by a family of curves called a shear-free null geodesic congruence (SFNGC). Examples include models of gravitational waves that were recently detected, and rotating black holes. The properties of a SFNGC induce a CR structure on the 3-dimensional leaf space of the foliation. The Kerr Theorem says that the family of metrics associated to a SFNGC contains a conformally flat representative iff the corresponding CR structure is embeddable in a real hyperquadric. Using Cartan's method of moving frames, we can classify which Levi-nondegenerate CR 3-folds are embeddable in the hyperquadric.

## John McCuan : Minimal graphs with jump discontinuities

- Geometry and Topology ( 254 Views )I will discuss some examples of minimal graphs with jump discontinuities in their boundaries. Robert Huff and I constructed these examples in response to a question of John Urbas: Is it possible for a minimal graph over a smooth annular domain to have an isolated jump discontinuity on the inner boundary component? I will also give a brief overview of the boundary consistency problem for Di Giorgi's generalized solutions of the minimal surface equation and discuss this question in that context. The construction of the examples uses the Weierstrass representation and the developing map introduced by Huff in the study of capillary problems.

## Subhankar Dey : Cable knots are not thin

- Geometry and Topology ( 246 Views )Thurston's geometrization conjecture and its subsequent proof for Haken manifolds distinguish knots in S^3 by the geometries in the complement of the knots. While the definition of alternating knots make use of nice knot diagrams, Knot Floer homology, a knot invariant toolbox, defined by Ozsvath-Szabo and Rasumussen, generalizes the definition of alternating knots in the context of knot Floer homology and defines family of quasi-alternating knots which contains all alternating knots. Using Lipshitz-Ozsvath-Thurston's bordered Floer homology, we prove a partial affirmation of a folklore conjecture in knot Floer theory, which bridges these two viewpoints of looking at knots.

## Daniel Stern : Scalar curvature and circle-valued harmonic maps

- Geometry and Topology ( 242 Views )We introduce a new tool for relating the scalar curvature of a Riemannian manifold to its global geometry and topology, based on the study of level sets of harmonic functions and harmonic maps to the circle. We will explain how these ideas lead to simple new proofs and improvements upon some well-known results in three-manifold geometry and general relativity, previously studied primarily via minimal surface and Dirac operator methods.

## Mark Stern : Instanton Decay

- Geometry and Topology ( 242 Views )The inverse square law is fundamental to our understanding of electromagnetism. The question of the decay of the fields associated to nonabelian gauge theories is more difficult because the equations determining these fields are nonlinear. In this talk, I will discuss recent progress in establishing decay rates for instantons.

## Nathan Dowlin : A spectral sequence from Khovanov homology to knot Floer homology

- Geometry and Topology ( 238 Views )Khovanov homology and knot Floer homology are two knot invariants which are defined using very different techniques, with Khovanov homology having its roots in representation theory and knot Floer homology in symplectic geometry. However, they seem to contain a lot of the same topological data about knots. Rasmussen conjectured that this similarity stems from a spectral sequence from Khovanov homology to knot Floer homology. In this talk I will give a construction of this spectral sequence. The construction utilizes a recently defined knot homology theory HFK_2 which provides a framework in which the two theories can be related.

## Isaac Sundberg : The Khovanov homology of slice disks

- Geometry and Topology ( 236 Views )To a cobordism between links, Khovanov homology assigns a linear map that is invariant under boundary-preserving isotopy of the cobordism. In this talk, we study those maps arising from surfaces in the 4-ball and apply our findings to existence and uniqueness questions regarding slice disks bounding a given knot. This reflects joint works with Jonah Swann and Kyle Hayden.

## Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set

- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.

## Amit Einav : Entropic Inequality on the Sphere

- Geometry and Topology ( 222 Views )It is an interesting well known fact that the relative entropy with respect to the Gaussian measure on $\mathbb{R}^N$ satisfies a simple subadditivity property. Namely, if $\Pi_1^{(i)}(F_N)$ is the first marginal of the density function F_N in the i-th variable then \begin{equation} \sum_{i=1}^N H(\Pi_1^{(i)}(F_N) | \gamma_1) \leq H(F_N | \gamma_N), \end{equation} where $\gamma_k$ is the standard Gaussian on $\mathbb{R}^k$. Surprisingly enough, when one tries to achieve a similar result on $\mathbb{S}^{N-1}(\sqrt{N})$ a factor of 2 appears in the right hand side of the inequality (a result due to Carlen, Lieb and Loss), and the constant is sharp. Besides a deviation from the simple equivalence of ensembles principle in equilibrium Statistical Mechanics, this entropic inequality on the sphere has interesting ramifications in other fields, such as Kinetic Theory. In this talk we will present conditions on the density function F_N, on the sphere, under which we can get an ?almost? subaditivity property; i.e. the factor 2 can be replaced with a factor of $1+\epsilon_N$, with $\epsilon_N$ given explicitly and going to zero. The main tools to be used in order to proved this result are an entropy conservation extension of F_N to $\mathbb{R}^N$ together with comparison of appropriate transportation distances such as the entropy, Fisher information and Wasserstein distance between the marginal of the original density and that of the extension. Time permitting, we will give an example, one that arises naturally in the investigation of the so-called Kac Model, to many families of functions that satisfy these conditions.

## Jimmy Petean : On the Yamabe invariant of Riemannian products

- Geometry and Topology ( 219 Views )The Yamabe invariant of a closed manifold appears naturally when studying the total scalar curvature functional on the space of Riemannian metrics on the manifold. Computations are difficult, in particular in the positive case (when the manifold admits metrics of positive scalar curvarture, and there is no unicity of metrics of constant scalar curvature on a conformal class). In this talk I will review a little of what is known about the computation of the invariant and discuss some recent joint work with K. Akutagawa and L. Florit on the Yamabe constants of Riemannian products.

## Richard Hain : The Lie Algebra of the Mapping Class Group, Part 2

- Geometry and Topology ( 218 Views )In this talk I will review the construction of the Lie algebra associated to the mapping class group of a (possibly decorated) surface and explain how this generalizes the Lie algebra associated to the pure braid group. I will also explain the analogue of the KZ-equation in the mapping class group case. In the second talk I will discuss filtrations of this Lie algebra associated to curve systems on the surface and their relation to handlebody groups.

## Curtis Porter : Straightening out degeneracy in CR geometry: When can it be done?

- Geometry and Topology ( 216 Views )CR geometry studies boundaries of domains in C^n and their generalizations. A central role is played by the Levi form L of a CR manifold M, which measures the failure of the CR bundle to be integrable, so that when L has a nontrivial kernel of constant rank, M is foliated by complex manifolds. If the local transverse structure to this foliation still determines a CR manifold N, then we say M is CR-straightenable, and the Tanaka-Chern-Moser classification of CR hypersurfaces with nondegenerate Levi form can be applied to N. It remains to classify those M for which L is degenerate and no such straightening exists. This was accomplished in dimension 5 by Ebenfelt, Isaev-Zaitzev, and Medori-Spiro. I will discuss their results as well as my recent progress on the problem in dimension 7 (http://arxiv.org/abs/1511.04019).

## Luca Di Cerbo : Seiberg-Witten equations on manifolds with cusps and geometric applications.

- Geometry and Topology ( 214 Views )In this talk, I will discuss the Seiberg-Witten equations on finite volume Riemannian manifolds which are diffeomorphic to the product of two hyperbolic Riemann surfaces of finite topological type. Finally, using a Seiberg-Witten scalar curvature estimate I will present several results concerning the Riemannian geometry of these spaces.

## Shubham Dwivedi : Geometric flows of $G_2$ structures

- Geometry and Topology ( 213 Views )We will start by discussing a flow of isometric $G_2$ structures. We consider the negative gradient flow of the energy functional restricted to the class of $G_2$ structures inducing a given Riemannian metric. We will discuss various analytic aspects of the flow including global and local derivative estimates, a compactness theorem and a monotonicity formula for the solutions. After defining an entropy functional we will prove that low entropy initial data lead to solutions that exist for all time and converge smoothly to a $G_2$ structure with divergence free torsion. We will also discuss finite time singularities and the singular set of the solutions. Finally, we will discuss the isometric flow "coupled? with the Ricci flow of the underlying metric, which again is a flow of $G_2$ structures, and discuss some of its properties. This is a based on two separate joint works with Panagiotis Gianniotis (University of Athens) and Spiro Karigiannis (University of Waterloo).

## Christina Tonnesen-Friedman : Canonical classes on admissible bundles

- Geometry and Topology ( 203 Views )For each K¨ahler class on a compact K¨ahler manifold there is a lower bound of the Calabi functional, which we call the ``potential energy''. Fixing the volume and letting the K¨ahler classes vary, the energy defines a functional which may be studied in it?s own right. Any critical point of the energy functional is then a K¨ahler class whose extremal K¨ahler metrics (if any) are so-called strongly extremal metrics. We take the well-studied case of Hirzebruch surfaces and generalize it in two different directions; along the dimension of the base and along the genus of the base. In the latter situation we are able to give a very concrete description of the corresponding dynamical system (as defined first by S. Simanca and L. Stelling). The talk is based on work in progress with Santiago Simanca.

## Kristen Hendricks : Periodic Knots and Heegaard Floer Homology

- Geometry and Topology ( 198 Views )We introduce periodic knots and discuss two classical results concerning their geometry, namely Murasugi's condition on the Alexander polynomial and Edmonds' condition on the genus. We then show how spectral sequences in Heegaard Floer link homology can be used to give a generalization of these two results in the case of doubly-periodic knots.

## Lee Deville : Synchrony vs. Asynchrony due to Large Deviations in Stochastic Neuronal Networks

- Geometry and Topology ( 191 Views )We consider idealized stochastic models for a network of pulse-coupled oscillators where there is randomness both in input and in network architecture. We describe the various types of dynamics which arise in this system, analyze scalings which arise in the infinite-network limit, and study the various "finite-size" effects as perturbations of these limits. Most notably, the networks we consider can simultaneously support both synchronous and asynchronous modes of behavior and will switch stochastically between these modes due to "rare events". We also relate the analysis of certain scaling limits of this network to classical graph-theoretical results involving the size of components in the Erdos-Renyi random graph. This work is joint with Charles Peskin and Joel Spencer.

## Lorenzo Foscolo : New G2-holonomy cones and exotic nearly Kähler structures on the 6-sphere and the product of two 3-spheres.

- Geometry and Topology ( 187 Views )Compact 6-dimensional nearly Kähler manifolds are the cross-sections of Riemannian cones with holonomy G2. A long-standing problem has been the question of existence of complete nearly Kähler 6-manifolds besides the four known homogeneous ones. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kähler structures on the 6-sphere and on the product of two 3-spheres. This is joint work with Mark Haskins, Imperial College London.

## Lev Rozansky : A categorification of the stable Witten-Reshetikhin-Turaev invariant of links in S2 x S1

- Geometry and Topology ( 182 Views )This work was done in close collaboration with M. Khovanov. The Witten-Reshetikhin-Turaev invariant Z(M,L;r) of a link L in a 3-manifold M is a seemingly random function of an integer r. However, for a small class of 3-manifolds constructed by identical gluing of two handlebodies (e.g., for S3 and for S2 x S1) and for sufficiently large values of r the ratio Z(M,L;r)/Z(M;r) is equal to a rational function J(M,L;q) of q evaluated at the first 2r-th root of unity. If M = S3, then J is the Jones polynomial. Khovanov categorified J(S3,L), that is, to a link L in S3 he assigned a homology H(L) with an extra Z-grading such that its graded Euler characteristic equals J(S3,L). We extend Khovanov's construction to links in S2 x S1 thus categorifying J(S2xS1,L). In his work on categorification of the Jones polynomial, Khovanov introduced special algebras H_n and assigned a H_m x H_n module to every (2m,2n)-tangle. We show that if a link L in S2 x S1 is presented as a closure of a (2n,2n)-tangle, then the Hochschild homology of its H_n bimodule is determined by the link itself and serves as a categorificaiton of J(S2xS1,L). Moreover, we show that this Hochschild homology can be approximated by Khovanov homology of the circular closure of the tangle within S3 by a high twist torus braid, thus providing a practical method of its computation.

## Jonathan Hanselman : The cosmetic surgery conjecture and Heegaard Floer homology

- Geometry and Topology ( 181 Views )The cosmetic surgery conjecture states that no two surgeries on a given knot produce the same 3-manifold (up to orientation preserving diffeomorphism). Floer homology has proved to be a powerful tool for approaching this problem; I will survey partial results that are known and then show that these results can be improved significantly. If a knot in S^3 admits purely cosmetic surgeries, then the surgery slopes are +/- 2 or +/- 1/q, and for any given knot we can give an upper bound for q in terms of the Heegaard Floer thickness. In particular, for any knot there are at most finitely many potential pairs of cosmetic surgery slopes. With the aid of computer computation we show that the conjecture holds for all knots with at most 15 crossings.

## Marcus Khuri : On the Penrose Inequality

- Geometry and Topology ( 181 Views )The cosmic censorship conjecture roughly states that singularities in the evolution of spacetime are always hidden from the outside world by event horizons. As a test for this conjecture Penrose proposed the inequality M >= (A/16pi)^1/2, relating the total ADM mass M of a spacetime to the area A of an event horizon. For time symmetric initial data sets of Einstein's equations this inequality has been confirmed, independently by Huisken and Ilmanen (for one black hole) and by Bray (for multiple black holes). The purpose of this talk is to show how the time symmetric proofs can be generalized to apply to general initial data, assuming existence for a canonical degenerate elliptic system of equations. This is joint work with Hubert Bray.

## Alexander Volkmann : Nonlinear mean curvature flow with Neumann boundary condition

- Geometry and Topology ( 178 Views )Using a level set formulation and elliptic regularization we define a notion of weak solutions of nonlinear mean curvature flow with Neumann boundary condition. We then outline the proof of an existence result for the weak level set flow. Finally, we discuss some geometric applications of this flow.

## Zheng Zhang : On motivic realizations for variations of Hodge structure of Calabi-Yau type over Hermitian symmetric domains

- Geometry and Topology ( 177 Views )Based on the work of Gross and Sheng-Zuo, Friedman and Laza have classified variations of real Hodge structure of Calabi-Yau type over Hermitian symmetric domains. In particular, over every irreducible Hermitian symmetric domain there exists a canonical variation of real Hodge structure of Calabi-Yau type. In this talk, we wil review Friedman and Laza?s classification. A natural question to ask is whether the canonical Hermitian variations of Hodge structure of Calabi-Yau type come from families of Calabi-Yau manifolds (geometric realization). In general, this is very difficult and is still open for small dimensional domains. We will discuss an intermediate question, namely does the canonical variations occur in algebraic geometry as sub-variations of Hodge structure of those coming from families of algebraic varieties (motivic realization). In particular, we will give motivic realizations for the canonical variations of Calabi-Yau type over irreducible tube domains of type A using abelian varieties of Weil type.