Yang Li : On the Donaldson-Scaduto conjecture
- Geometry and Topology ( 708 Views )Motivated by G2-manifolds with coassociative fibrations in the adiabatic limit, Donaldson and Scaduto conjectured the existence of associative submanifolds homeomorphic to a three-holed 3-sphere with three asymptotically cylindrical ends in X \times R^3, where X is an A2-type ALE hyperkähler manifold. We prove this conjecture by solving a real Monge-Ampère equation with singular right hand side. The method produces many other asymptotically cylindrical U(1)-invariant special Lagrangians in X \times R^2, where X arises from the Gibbons-Hawking construction. This is joint work in progress with Saman Habibi Esfahani.
Demetre Kazaras : If Ricci is bounded below, then mass is in control!
- Geometry and Topology ( 553 Views )The ADM mass of an isolated gravitational system is a geometric invariant measuring the total mass due to matter and other fields. In a previous work, we showed how to compute this invariant (in 3 spatial dimensions) by studying harmonic functions. Now I'll use this formula to consider the question: How flat is an asymptotically flat manifold with very little total mass? In the presence of a lower bound on Ricci curvature, we make progress on this question and confirm special cases of conjectures made by Ilmanen and Sormani.
Renato Bettiol : Positive biorthogonal curvature in dimension 4
- Geometry and Topology ( 384 Views )A 4-manifold is said to have positive biorthogonal curvature if the average of sectional curvatures of any pair of orthogonal planes is positive. In this talk, I will describe a construction of metrics with positive biorthogonal curvature on the product of spheres, and then combine it with recent surgery stability results of Hoelzel to classify (up to homeomorphism) the closed simply-connected 4-manifolds that admit a metric with positive biorthogonal curvature.
Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.
- Geometry and Topology,Uploaded Videos ( 315 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.
Luca Di Cerbo : Extended Graph Manifolds, Dehn Fillings, and Einstein Metrics
- Geometry and Topology ( 301 Views )In this talk, I will present some new topological obstructions for solving the Einstein equations (in Riemannian signature) on a large class of closed four-manifolds. Finally, I will show that complex-hyperbolic Einstein Dehn filling compactification cannot possibly performed in dimension four. This is in striking contrast with the real-hyperbolic case, and it answers (negatively) a fifteen years old question of Michael Anderson. If time permits, I will conclude with some tantalizing open problems both in dimension four and in higher dimensions. Part of this work is joint with M. Golla (Universit\’e de Nantes).
Robert Bryant : The affine Bonnet problem
- Geometry and Topology ( 296 Views )The classical Euclidean problem studied by Bonnet in the 19th century was to determine whether, and in how many ways, a Riemannian surface can be isometrically embedded into Euclidean 3-space so that its mean curvature is a prescribed function. He found that, generically, specifying a metric and mean curvature admitted no solution but that there are special cases in which, not only are there solutions, but there are even 1-parameter families of distinct (i.e., mutually noncongruent) solutions. Much later, these Bonnet surfaces were found to be intimately connected with integrable systems and Lax pairs. In this talk, I will consider the analogous problem in affine geometry: To determine whether, and in how many ways, a surface endowed with a Riemannian metric g and a function H can be immersed into affine 3-space in such a way that the induced Blaschke metric is g and the induced affine mean curvature is H. This affine problem is, in many ways, richer and more interesting than the corresponding Euclidean problem. I will classify the pairs (g,H) that display the greatest flexibility in their solution space and explain what is known about the (suspected) links with integrable systems and Lax pairs.
Curtis Porter : Spinning Black Holes and CR 3-Folds
- Geometry and Topology ( 276 Views )Some physically significant solutions to Einstein's field equations are spacetimes which are foliated by a family of curves called a shear-free null geodesic congruence (SFNGC). Examples include models of gravitational waves that were recently detected, and rotating black holes. The properties of a SFNGC induce a CR structure on the 3-dimensional leaf space of the foliation. The Kerr Theorem says that the family of metrics associated to a SFNGC contains a conformally flat representative iff the corresponding CR structure is embeddable in a real hyperquadric. Using Cartan's method of moving frames, we can classify which Levi-nondegenerate CR 3-folds are embeddable in the hyperquadric.
John McCuan : Minimal graphs with jump discontinuities
- Geometry and Topology ( 254 Views )I will discuss some examples of minimal graphs with jump discontinuities in their boundaries. Robert Huff and I constructed these examples in response to a question of John Urbas: Is it possible for a minimal graph over a smooth annular domain to have an isolated jump discontinuity on the inner boundary component? I will also give a brief overview of the boundary consistency problem for Di Giorgi's generalized solutions of the minimal surface equation and discuss this question in that context. The construction of the examples uses the Weierstrass representation and the developing map introduced by Huff in the study of capillary problems.
Siqi He : Classification of Nahm Pole Solutions to the KW Equations on $S^1\times\Sigma\times R^+$
- Geometry and Topology ( 251 Views )We will discuss Witten’s gauge theory approach to Jones polynomial by counting solutions to the Kapustin-Witten (KW) equations with singular boundary conditions over 4-manifolds. We will give a classification of solutions to the KW equations over $S^1\times\Sigma\times R^+$. We prove that all solutions to the KW equations over $S^1\times\Sigma\times R^+$ are $S^1$ direction invariant and we give a classification of the KW monopole over $\Sigma\times R^+$ based on the Hermitian-Yang-Mills type structure of KW monopole equation. This is based on joint works with Rafe Mazzeo.
Daniel Stern : Scalar curvature and circle-valued harmonic maps
- Geometry and Topology ( 242 Views )We introduce a new tool for relating the scalar curvature of a Riemannian manifold to its global geometry and topology, based on the study of level sets of harmonic functions and harmonic maps to the circle. We will explain how these ideas lead to simple new proofs and improvements upon some well-known results in three-manifold geometry and general relativity, previously studied primarily via minimal surface and Dirac operator methods.
Alex Waldron : Yang-Mills flow on special holonomy manifolds
- Geometry and Topology ( 234 Views )I will describe an upcoming paper with Goncalo Oliveira investigating the properties of Yang-Mills flow on base manifolds with restricted holonomy, generalizing known results from the 4-d and Kahler cases. We show that finite-time blowup is governed by the F^7 component of the curvature in the G_2 and Spin(7) cases, and by the appropriate curvature component in the remaining cases on Berger's list. Assuming that this component remains bounded along the flow, we show that the infinite-time bubbling set is calibrated by the defining (n-4)-form.
Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set
- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.
Richard Hain : The Lie Algebra of the Mapping Class Group, Part 1
- Geometry and Topology ( 223 Views )In this talk I will review the construction of the Lie algebra associated to the mapping class group of a (possibly decorated) surface and explain how this generalizes the Lie algebra associated to the pure braid group. I will also explain the analogue of the KZ-equation in the mapping class group case. In the second talk I will discuss filtrations of this Lie algebra associated to curve systems on the surface and their relation to handlebody groups.
Jimmy Petean : On the Yamabe invariant of Riemannian products
- Geometry and Topology ( 219 Views )The Yamabe invariant of a closed manifold appears naturally when studying the total scalar curvature functional on the space of Riemannian metrics on the manifold. Computations are difficult, in particular in the positive case (when the manifold admits metrics of positive scalar curvarture, and there is no unicity of metrics of constant scalar curvature on a conformal class). In this talk I will review a little of what is known about the computation of the invariant and discuss some recent joint work with K. Akutagawa and L. Florit on the Yamabe constants of Riemannian products.
Curtis Porter : Straightening out degeneracy in CR geometry: When can it be done?
- Geometry and Topology ( 216 Views )CR geometry studies boundaries of domains in C^n and their generalizations. A central role is played by the Levi form L of a CR manifold M, which measures the failure of the CR bundle to be integrable, so that when L has a nontrivial kernel of constant rank, M is foliated by complex manifolds. If the local transverse structure to this foliation still determines a CR manifold N, then we say M is CR-straightenable, and the Tanaka-Chern-Moser classification of CR hypersurfaces with nondegenerate Levi form can be applied to N. It remains to classify those M for which L is degenerate and no such straightening exists. This was accomplished in dimension 5 by Ebenfelt, Isaev-Zaitzev, and Medori-Spiro. I will discuss their results as well as my recent progress on the problem in dimension 7 (http://arxiv.org/abs/1511.04019).
Luca Di Cerbo : Seiberg-Witten equations on manifolds with cusps and geometric applications.
- Geometry and Topology ( 214 Views )In this talk, I will discuss the Seiberg-Witten equations on finite volume Riemannian manifolds which are diffeomorphic to the product of two hyperbolic Riemann surfaces of finite topological type. Finally, using a Seiberg-Witten scalar curvature estimate I will present several results concerning the Riemannian geometry of these spaces.
Christina Tonnesen-Friedman : Canonical classes on admissible bundles
- Geometry and Topology ( 203 Views )For each K¨ahler class on a compact K¨ahler manifold there is a lower bound of the Calabi functional, which we call the ``potential energy''. Fixing the volume and letting the K¨ahler classes vary, the energy defines a functional which may be studied in it?s own right. Any critical point of the energy functional is then a K¨ahler class whose extremal K¨ahler metrics (if any) are so-called strongly extremal metrics. We take the well-studied case of Hirzebruch surfaces and generalize it in two different directions; along the dimension of the base and along the genus of the base. In the latter situation we are able to give a very concrete description of the corresponding dynamical system (as defined first by S. Simanca and L. Stelling). The talk is based on work in progress with Santiago Simanca.
Yu Pan : Exact Lagrangian cobordisms and the augmentation category
- Geometry and Topology ( 196 Views )To a Legendrian knot, one can associate an $A_{\infty}$ category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor of the augmentation categories of the two knots. We study the functor and establish a long exact sequence relating the corresponding cohomology of morphisms of the two ends. As applications, we prove that the functor between augmentation categories is injective on the level of equivalence classes of objects and find new obstructions to the existence of exact Lagrangian cobordisms in terms of linearized contact homology and ruling polynomials.
John Berman : Measuring Ramification with Topological Hochschild Homology
- Geometry and Topology ( 196 Views )Topological Hochschild homology (THH) has recently been popular as an approximation to algebraic K-theory, but it is also a measure of ramification in the sense of number theory. I will survey the interaction between THH and number theory, along with some surprising connections to classical algebraic topology. This will culminate in a new computation of THH of any ring of integers R, suggesting the philosophy: Spec(R) -> Spec(Z) is one point away from being etale.
Jer-Chin Chuang : Subdivisions and Transgressive Chains
- Geometry and Topology ( 192 Views )Combinatorial transgressions are secondary invariants of a space admitting triangulations. They arise from subdivisions and are analogous to transgressive forms such as those in Chern-Weil theory. In this talk, I characterize transgressions that are path-independent of subdivision sequence. The result is obtained by using a cohomology on posets that is shown to be equivalent to higher derived functors of the inverse (or projective) limit over the opposite poset.
Colleen Robles : A refinement of the Lefschetz decomposition for hyperkahler manifolds
- Geometry and Topology ( 191 Views )The cohomology (with complex coefficients) of a compact kahler manifold M admits an action of the algebra sl(2,C), and this action plays an essential role in the analysis of the cohomology. In the case that M is a hyperkahler manifold Verbitsky and Looijenga—Lunts showed there is a family of such sl(2,C)’s generating an algebra isomorphic to so(4,b_2-2), and this algebra similarly can tell us quite a bit about the cohomology of the hyperkahler. I will describe some results of this nature for both the Hodge numbers and Nagai’s conjecture on the nilpotent logarithm of monodromy arising from a degeneration. This is joint work with Mark Green, Radu Laza and Yoonjoo Kim.
Valentino Tosatti : The Calabi-Yau equation on symplectic four-manifolds
- Geometry and Topology ( 191 Views )Abstract: The Calabi conjecture, proved by Yau thirty years ago, says that on a compact Kahler manifold one can find a unique Kahler metric in every Kahler class with prescribed volume form. Donaldson recently conjectured that this theorem can be extended to symplectic forms with a compatible almost complex structure in 4 dimensions, and gave possible applications to the symplectic topology of 4-manifolds. I will discuss Donaldson's conjecture and some recents developments (joint work with B. Weinkove and partly with S.-T. Yau).
Lorenzo Foscolo : New G2-holonomy cones and exotic nearly Kähler structures on the 6-sphere and the product of two 3-spheres.
- Geometry and Topology ( 187 Views )Compact 6-dimensional nearly Kähler manifolds are the cross-sections of Riemannian cones with holonomy G2. A long-standing problem has been the question of existence of complete nearly Kähler 6-manifolds besides the four known homogeneous ones. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kähler structures on the 6-sphere and on the product of two 3-spheres. This is joint work with Mark Haskins, Imperial College London.
Lev Rozansky : A categorification of the stable Witten-Reshetikhin-Turaev invariant of links in S2 x S1
- Geometry and Topology ( 182 Views )This work was done in close collaboration with M. Khovanov. The Witten-Reshetikhin-Turaev invariant Z(M,L;r) of a link L in a 3-manifold M is a seemingly random function of an integer r. However, for a small class of 3-manifolds constructed by identical gluing of two handlebodies (e.g., for S3 and for S2 x S1) and for sufficiently large values of r the ratio Z(M,L;r)/Z(M;r) is equal to a rational function J(M,L;q) of q evaluated at the first 2r-th root of unity. If M = S3, then J is the Jones polynomial. Khovanov categorified J(S3,L), that is, to a link L in S3 he assigned a homology H(L) with an extra Z-grading such that its graded Euler characteristic equals J(S3,L). We extend Khovanov's construction to links in S2 x S1 thus categorifying J(S2xS1,L). In his work on categorification of the Jones polynomial, Khovanov introduced special algebras H_n and assigned a H_m x H_n module to every (2m,2n)-tangle. We show that if a link L in S2 x S1 is presented as a closure of a (2n,2n)-tangle, then the Hochschild homology of its H_n bimodule is determined by the link itself and serves as a categorificaiton of J(S2xS1,L). Moreover, we show that this Hochschild homology can be approximated by Khovanov homology of the circular closure of the tangle within S3 by a high twist torus braid, thus providing a practical method of its computation.
Thomas Walpuski : G2instantons over twisted connected sums
- Geometry and Topology ( 178 Views )In joint work with H. Sá Earp we introduced a method to construct G2instantons over compact G2manifolds arising as the twisted connected sum of a matching pair of building blocks. I will recall some of the background (including the twisted connected sum construction and a short discussion as to why one should care about G2instantons), discuss our main result and explain how to interpret it in terms of certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface. If time permits, I will discuss an idea to construct the input required by our gluing theorem.
Mark Stern : Nahm transforms and ALF Spaces
- Geometry and Topology ( 175 Views )In this talk we consider the moduli space of Yang-Mills instantons on the family of hyperkahler 4 manifolds known as multi-center TaubNUT spaces. We describe the Nahm transform for flat manifolds. Then we sketch its extension to the above hyperkahler family, where it defines an isometry between the moduli space of instantons on the multi-center TaubNUT and the moduli space of solutions of a rococo system of ordinary differential equations. This is joint work with Sergey Cherkis and Andres Larrain Hubach
Natalia Kolokolnikova : Thom polynomial and its K-theoretic generalization
- Geometry and Topology ( 174 Views )Global singularity theory originates from problems in obstruction theory. Consider the following question: is there an immersion in a given homotopy class of maps between two smooth compact manifolds M and N? We can reformulate this question as "is the set of points, where a generic smooth map between M and N is not an immersion, empty"? This set is the simplest example of a singularity. Alternatively, we can ask a question whether the cohomology class of this set is 0 or not. Turns out, there is a universal polynomial depending only on the dimensions of M and N and on the type of singularity, that, when evaluated in the corresponding characteristic classes of M and N, computes the cohomology class of a singularity. This polynomial is called the Thom polynomial, and it is the central notion of singularity theory. In my talk I will give an introduction to singularity theory, define the classic Thom polynomial and talk about different approaches to its K-theoretic generalization.
Mark Stern : Geometry of stable Yang-Mills connections
- Geometry and Topology ( 174 Views )On a compact 4-manifold, every self-dual connection and every anti-self-dual connection minimizes the Yang-Mills energy. In this talk, I will answer the converse question for compact homogeneous 4-manifolds. I will also survey related stability results in other dimensions.
Adam Levine : Heegaard Floer Homology and Closed Exotic 4-Manifolds
- Geometry and Topology ( 171 Views )We discuss new methods for using the Heegaard Floer homology of hypersurfaces to distinguish between smooth closed 4-manifolds that are homeomorphic but non-diffeomorphic. Specifically, for a 4-manifold X with b_1(X)=1, the minimum rank of the reduced Heegaard Floer homology of any embedded 3-manifold X representing a generator of H_1(X) gives a diffeomorphism invariant of X. We use this invariant to distinguish certain infinite families of exotic 4-manifolds that cannot be distinguished by previously known techniques. Using related ideas, we also provide the first known examples of (non-simply-connected) exotic 4-manifolds with negative definite intersection form. This is joint work with Tye Lidman and Lisa Piccirillo.