## Alexander Volkmann : Nonlinear mean curvature flow with Neumann boundary condition

- Geometry and Topology ( 178 Views )Using a level set formulation and elliptic regularization we define a notion of weak solutions of nonlinear mean curvature flow with Neumann boundary condition. We then outline the proof of an existence result for the weak level set flow. Finally, we discuss some geometric applications of this flow.

## Yu Pan : Exact Lagrangian cobordisms and the augmentation category

- Geometry and Topology ( 196 Views )To a Legendrian knot, one can associate an $A_{\infty}$ category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor of the augmentation categories of the two knots. We study the functor and establish a long exact sequence relating the corresponding cohomology of morphisms of the two ends. As applications, we prove that the functor between augmentation categories is injective on the level of equivalence classes of objects and find new obstructions to the existence of exact Lagrangian cobordisms in terms of linearized contact homology and ruling polynomials.

## Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set

- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.

## Lee Deville : Synchrony vs. Asynchrony due to Large Deviations in Stochastic Neuronal Networks

- Geometry and Topology ( 191 Views )We consider idealized stochastic models for a network of pulse-coupled oscillators where there is randomness both in input and in network architecture. We describe the various types of dynamics which arise in this system, analyze scalings which arise in the infinite-network limit, and study the various "finite-size" effects as perturbations of these limits. Most notably, the networks we consider can simultaneously support both synchronous and asynchronous modes of behavior and will switch stochastically between these modes due to "rare events". We also relate the analysis of certain scaling limits of this network to classical graph-theoretical results involving the size of components in the Erdos-Renyi random graph. This work is joint with Charles Peskin and Joel Spencer.

## Yanir Rubinstein : Einstein metrics on Kahler manifolds

- Geometry and Topology ( 232 Views )The Uniformization Theorem implies that any compact Riemann surface has a constant curvature metric. Kahler-Einstein (KE) metrics are a natural generalization of such metrics, and the search for them has a long and rich history, going back to Schouten, Kahler (30's), Calabi (50's), Aubin, Yau (70's) and Tian (90's), among others. Yet, despite much progress, a complete picture is available only in complex dimension 2. In contrast to such smooth KE metrics, in the mid 90's Tian conjectured the existence of KE metrics with conical singularities along a divisor (i.e., for which the manifold is `bent' at some angle along a complex hypersurface), motivated by applications to algebraic geometry and Calabi-Yau manifolds. More recently, Donaldson suggested a program for constructing smooth KE metrics of positive curvature out of such singular ones, and put forward several influential conjectures. In this talk I will try to give an introduction to Kahler-Einstein geometry and briefly describe some recent work mostly joint with R. Mazzeo that resolves some of these conjectures. One key ingredient is a new C^{2,\alpha} a priori estimate and continuity method for the complex Monge-Ampere equation. It follows that many algebraic varieties that may not admit smooth KE metrics (e.g., Fano or minimal varieties) nevertheless admit KE metrics bent along a simple normal crossing divisor.

## Mark Stern : Stability, dynamics, and the quantum Hodge theory of vector bundles

- Geometry and Topology ( 187 Views )I will discuss various approaches to the question: When does a vector bundle admit a holomorphic structure? I will explore applications of Yang-Mills theory, geometric quantization, and discrete dynamics to this problem.

## Jim Isenberg : Construcing solutions of the Einstein constraint equations

- Geometry and Topology ( 195 Views )The first step in finding a spacetime solution to the Einstein gravitational field equations via the inital value formulation is to construct initial data which satisfy the Einstein constraint equations. There are three ways of carrying out this construction which have been found to be useful: the conformal and conformal thin sandwich methods, the gluing techniques, and the quasi-spherical approaches. We describe each of these, we discuss their advantages and disadvantages, we outline some of their recent successful applications, and we present some of the outstanding questions remaining to be solved from each of these perspectives.

## Ioana Suvaina : ALE Ricci flat Kahler surfaces

- Geometry and Topology ( 142 Views )The talk presents an explicit classification of the ALE Ricci flat K\"ahler surfaces, generalizing previous classification results of Kronheimer. The manifolds are related to a special class of deformations of quotient singularities of type $\mathbb C^2/G$, with $G$ a finite subgroup of $U(2)$. I will also explain the relation with the Tian-Yau construction of complete Ricci flat Kahler manifolds.

## Anna Skorobogatova : Area-minimizing currents: structure of singularities and uniqueness of tangent cones

- Geometry and Topology ( 79 Views )The problem of determining the size and structure of the interior singular set of area-minimizing surfaces has been studied thoroughly in a number of different frameworks, with many ground-breaking contributions. In the framework of integral currents, when the surface has higher codimension than 1, the presence of singular points with flat tangent cones creates an obstruction to easily understanding the interior singularities. Until recently, little was known in this direction, particularly for surfaces of dimension higher than two, beyond Almgrenâ??s celebrated dimension estimate on the interior singular set. In this talk I will discuss joint works with Camillo De Lellis and Paul Minter, where we establish (m-2)-rectifiability of the interior singular set of an m-dimensional area-minimizing integral current and classify tangent cones at \mathcal{H}^{m-2}-a.e. interior point.

## Adam Saltz : Link homology and Floer homology in pictures by cobordisms

- Geometry and Topology ( 129 Views )There are no fewer than eight link homology theories which admit spectral sequences from Khovanov homology. These theories have very different origins -- representation theory, gauge theory, symplectic topology -- so it's natural to ask for some kind of unifying theory. I will attempt to describe this theory using Bar-Natan's pictorial formulation of link homology. This strengthens a result of Baldwin, Hedden, and Lobb and proves new functoriality results for several link homology theories. I won't assume much specific knowledge of these link homology theories, and the bulk of the talk will be accessible to graduate students!

## GonĂ§alo Oliveira : Gauge theory on Aloff-Wallach spaces

- Geometry and Topology ( 204 Views )I will describe joint work with Gavin Ball where we classify certain G2-Instantons on Aloff-Wallach spaces. This classification can be used to test ideas and explicitly observe various interesting phenomena. For instance, we can: (1) Vary the underlying structure and find out what happens to the G2-instantons along the way; (2) Distinguish certain G2-structures (called nearly parallel) using G2-Instantons; (3) Find G2-Instantons, with respect to these structures, which are not absolute minima of the Yang-Mills functional.

## Zheng Zhang : On motivic realizations for variations of Hodge structure of Calabi-Yau type over Hermitian symmetric domains

- Geometry and Topology ( 177 Views )Based on the work of Gross and Sheng-Zuo, Friedman and Laza have classified variations of real Hodge structure of Calabi-Yau type over Hermitian symmetric domains. In particular, over every irreducible Hermitian symmetric domain there exists a canonical variation of real Hodge structure of Calabi-Yau type. In this talk, we wil review Friedman and LazaÂ?s classification. A natural question to ask is whether the canonical Hermitian variations of Hodge structure of Calabi-Yau type come from families of Calabi-Yau manifolds (geometric realization). In general, this is very difficult and is still open for small dimensional domains. We will discuss an intermediate question, namely does the canonical variations occur in algebraic geometry as sub-variations of Hodge structure of those coming from families of algebraic varieties (motivic realization). In particular, we will give motivic realizations for the canonical variations of Calabi-Yau type over irreducible tube domains of type A using abelian varieties of Weil type.

## Eylem Zeliha Yildiz : Braids in planar open books and fillable surgeries.

- Geometry and Topology ( 129 Views )We'll give a useful description of braids in $\underset{n}{\#}(S^1\times S^2)$ using surgery diagrams, which will allow us to address families of knots in lens spaces that admit fillable positive contact surgery. We also demonstrate that smooth $16$ surgery to the knot $P(-2,3,7)$ bounds a rational ball, which admits a Stein handlebody. This answers a question left open by Thomas Mark and BĂźlent Tosun.

## John Etnyre : The Contact Sphere Theorem and Tightness in Contact Metric Manifolds

- Geometry and Topology ( 132 Views )We establish an analog of the sphere theorem in the setting of contact geometry. Specifically, if a given three dimensional contact manifold admits a compatible Riemannian metric of positive 4/9-pinched curvature then the underlying contact structure is tight. The proof is a blend of topological and geometric techniques. A necessary technical result is a lower bound for the radius of a tight ball in a contact 3-manifold. We will also discuss geometric conditions in dimension three for a contact structure to be universally tight in the nonpositive curvature setting. This is joint work with Rafal Komendarczyk and Patrick Massot.

## Julio Rebelo : On closed currents invariant by holomorphic foliations

- Geometry and Topology ( 168 Views )Let M be an algebraic complex surface equipped with a singular foliation F. We assume that F leaves invariant a closed current on M or, equivalently, that F possesses a transversely invariant measure. The purpose of this talk is two-fold. First we want to classify the pairs (M, F) as above, a problem that is usually regarded as a step towards developing a suitable Ergodic Theory for these foliations. On the other hand we want to explain the connection of this problem with the Kobayashi hyperbolicity of general type surfaces. In particular we shall sketch a new proof of McQuillan's theorem proving the Green-Griffiths conjecture for general type surfaces having positive Segre class.

## Bulent Tosun : Fillability of contact surgeries and Lagrangian discs

- Geometry and Topology ( 165 Views )It is well known that all contact 3-manifolds can be obtained from the standard contact structure on the 3-sphere by contact surgery on a Legendrian link. Hence, an interesting and much studied question asks what properties of a contact structure are preserved under various types of contact surgeries. The case for the negative contact surgeries is fairly well understood. In this talk, we will discuss some new results about positive contact surgeries and in particular completely characterize when contact (r) surgery is symplectically/Stein fillable for r in (0,1]. This is joint work with James Conway and John Etnyre.

## Tye Lidman : Homology cobordisms with no 3-handles

- Geometry and Topology ( 243 Views )Homology cobordisms are a special type of manifold which are relevant to a variety of areas in geometric topology, including knot theory and triangulability. We study the behavior of a variety of invariants under a particular family of four-dimensional homology cobordisms which naturally arise from Stein manifolds. This is joint work with Ali Daemi, Jen Hom, Shea Vela-Vick, and Mike Wong.

## Luya Wang : Deformation inequivalent symplectic structures and Donaldsons four-six question

- Geometry and Topology ( 0 Views )Studying symplectic structures up to deformation equivalences is a fundamental question in symplectic geometry. Donaldson asked: given two homeomorphic closed symplectic four-manifolds, are they diffeomorphic if and only if their stabilized symplectic six-manifolds, obtained by taking products with CP^1 with the standard symplectic form, are deformation equivalent? I will discuss joint work with Amanda Hirschi on showing how deformation inequivalent symplectic forms remain deformation inequivalent when stabilized, under certain algebraic conditions. This gives the first counterexamples to one direction of Donaldsonâ??s â??four-sixâ? question and the related Stabilizing Conjecture by Ruan. In the other direction, I will also discuss more supporting evidence via Gromov-Witten invariants.

## Ăkos Nagy : From instantons to vortices on spherically symmetric ALF manifolds

- Geometry and Topology ( 125 Views )Yang-Mills theory on Asymptotically Locally Flat (ALF) 4-manifolds has been intensely studied by geometers and physicists since the late 70's. The most important examples are R^3 x S^1, the (multi-)Taub-NUT spaces, and the Euclidean Schwarzschild manifold. In this talk, I will outline the correspondence between spherically symmetric Yang-Mills instantons and planar Abelian vortices (following the ideas of Witten, Taubes, and Garcia-Prada), and then apply this instanton-vortex duality to spherically symmetric ALF 4-manifolds. Finally, I will show how this construction can be used to describe the low energy instanton moduli spaces of the Euclidean Schwarzschild manifold, and its generalizations. This is a joint work with GonĂ§alo Oliveira (IMPA).

## Jer-Chin Chuang : Subdivisions and Transgressive Chains

- Geometry and Topology ( 192 Views )Combinatorial transgressions are secondary invariants of a space admitting triangulations. They arise from subdivisions and are analogous to transgressive forms such as those in Chern-Weil theory. In this talk, I characterize transgressions that are path-independent of subdivision sequence. The result is obtained by using a cohomology on posets that is shown to be equivalent to higher derived functors of the inverse (or projective) limit over the opposite poset.

## John Pardon : Existence of Lefschetz fibrations on Stein/Weinstein domains

- Geometry and Topology ( 130 Views )I will describe joint work with E. Giroux in which we show that every Weinstein domain admits a Lefschetz fibration over the disk (that is, a singular fibration with Weinstein fibers and Morse singularities). We also prove an analogous result for Stein domains in the complex analytic setting. The main tool used to prove these results is Donaldson's quantitative transversality.

## Jonathan Hanselman : The cosmetic surgery conjecture and Heegaard Floer homology

- Geometry and Topology ( 181 Views )The cosmetic surgery conjecture states that no two surgeries on a given knot produce the same 3-manifold (up to orientation preserving diffeomorphism). Floer homology has proved to be a powerful tool for approaching this problem; I will survey partial results that are known and then show that these results can be improved significantly. If a knot in S^3 admits purely cosmetic surgeries, then the surgery slopes are +/- 2 or +/- 1/q, and for any given knot we can give an upper bound for q in terms of the Heegaard Floer thickness. In particular, for any knot there are at most finitely many potential pairs of cosmetic surgery slopes. With the aid of computer computation we show that the conjecture holds for all knots with at most 15 crossings.

## Hannah Schwartz : Using 2-torsion to obstruct topological isotopy

- Geometry and Topology ( 132 Views )It is well known that two knots in S^3 are ambiently isotopic if and only if there is an orientation preserving automorphism of S^3 carrying one knot to the other. In this talk, we will examine a family of smooth 4-manifolds in which the analogue of this fact does not hold, i.e. each manifold contains a pair of smoothly embedded, homotopic 2-spheres that are related by a diffeomorphism, but not smoothly isotopic. In particular, the presence of 2-torsion in the fundamental groups of these 4-manifolds can be used to obstruct even a topological isotopy between the 2-spheres; this shows that Gabai's recent "4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis.

## Catherine Searle : Torus actions, maximality, and non-negative curvature

- Geometry and Topology ( 164 Views )The classification of compact Riemannian manifolds with positive or non-negative sectional curvature is a long-standing problem in Riemannian geometry. One successful approach has been the introduction of symmetries, and an important first case to understand is that of continuous abelian symmetries. In recent work with Escher, we obtained an equivariant diffeomorphism classification of closed, simply-connected non-negatively curved Riemannian manifolds admitting an isotropy-maximal torus action, with implications for the Maximal Symmetry Rank Conjecture for non-negatively curved manifolds. I will discuss joint work with Escher and Dong, that builds on this work to extend the classification to those manifolds admitting an almost isotropy-maximal action.