Quicklists
public 01:34:46

Katrin Wehrheim : The symplectic category: correspondences, quilts, and topological applications

  -   Geometry and Topology ( 103 Views )

A 'correspondence' between two manifolds is a submanifold in the product. This generalizes the notion of a map (whose graph is a correspondence) ... and is of little use in general since the composition of correspondences, though naturally defined, can be highly singular.

Lagrangian correspondences between symplectic manifolds however are highly useful (and will be defined carefully). They were introduced by Weinstein in an attempt to build a symplectic category that has morphisms between any pair of symplectic manifolds (not just symplectomorphic pairs).

In joint work with Chris Woodward we define such a cateory, in which all Lagrangian correspondences are composable morphisms. We extend it to a 2-category by constructing a Floer homology for generalized Lagrangian correspondences. One of the applications is a general prescription for constructing topological invariants. We consider e.g. 3-manifolds or links as morphisms (cobordisms or tangles) in a topological category. In order to obtain a topological invariant from our generalized Floer homology, it suffices to

(i) decompose morphisms into simple morphisms (e.g. by cutting between critical levels of a Morse function)

(ii) associate to the objects and simple morphisms smooth symplectic manifolds and Lagrangian correspondences between them (e.g. using moduli spaces of bundles or representations)

(iii) check that the moves between different decompositions are associated to 'good' geometric composition of Lagrangian correspondences

public 01:34:58

Vladimir Matveev : Binet-Legendre metric and applications of Riemannian results in Finsler geometry

  -   Geometry and Topology ( 108 Views )

We introduce a construction that associates a Riemannian metric $g_F$ (called the \emph{Binet-Legendre} metric) to a given Finsler metric $F$ on a smooth manifold $M$. The transformation $F \mapsto g_F$ is $C^0$-stable and has good smoothness properties, in contrast to previously considered constructions. The Riemannian metric $g_F$ also behaves nicely under conformal or isometric transformations of the Finsler metric $F$ that makes it a powerful tool in Finsler geometry. We illustrate that by solving a number of named problems in Finsler geometry. In particular, we extend a classical result of Wang to all dimensions. We answer a question of Matsumoto about local conformal mapping between two Berwaldian spaces and use it to investigate essentially conformally Berwaldian manifolds. We describe all possible conformal self maps and all self similarities on a Finsler manifold, generalizing the famous result of Obata to Finslerian manifolds. We also classify all compact conformally flat Finsler manifolds. We solve a conjecture of Deng and Hou on locally symmetric Finsler spaces. We prove smoothness of isometries of Holder-continuous Finsler metrics. We construct new `easy to calculate' conformal and metric invariants of Finsler manifolds. The results are based on the papers arXiv:1104.1647, arXiv:1409.5611, arXiv:1408.6401, arXiv:1506.08935, arXiv:1406.2924 partially joint with M. Troyanov (EPF Lausanne) and Yu. Nikolayevsky (Melbourne)