## Zhenyi Chen : A-infinity Sabloff Duality via the LSFT Algebra

- Geometry and Topology ( 0 Views )The Chekanov-Eliashberg dga is a powerful invariant for Legendrian links. Using augmentations of this dga, one can truncate its differential to produce linearized contact homology. About two decades ago, Sabloff established a duality in this setting, closely linked to the PoincarĂ© duality of Lagrangian fillings. This truncation has since been generalized into a unital A-infinity category, Aug_+. In this talk, I will present new results that extend Sabloff duality from the level of cochain complexes to A-infinity bimodules over Aug_+. The key tool in this extension is Ng's LSFT algebra, which enlarges the Chekanov-Eliashberg dga. If time permits, I will also discuss how the LSFT algebra encodes additional homotopy coherent data, providing further insights into Sabloff duality.