Zhenyi Chen : A-infinity Sabloff Duality via the LSFT Algebra
- Geometry and Topology ( 0 Views )The Chekanov-Eliashberg dga is a powerful invariant for Legendrian links. Using augmentations of this dga, one can truncate its differential to produce linearized contact homology. About two decades ago, Sabloff established a duality in this setting, closely linked to the Poincaré duality of Lagrangian fillings. This truncation has since been generalized into a unital A-infinity category, Aug_+. In this talk, I will present new results that extend Sabloff duality from the level of cochain complexes to A-infinity bimodules over Aug_+. The key tool in this extension is Ng's LSFT algebra, which enlarges the Chekanov-Eliashberg dga. If time permits, I will also discuss how the LSFT algebra encodes additional homotopy coherent data, providing further insights into Sabloff duality.
Calvin McPhail-Snyder : Towards quantum complex Chern-Simons theory
- Geometry and Topology ( 0 Views )I will discuss recent joint work (with N. Reshetikhin) defining invariants ? of knot (and link and tangle) exteriors with flat ???? connections. The construction is via a geometric version of the Reshetikhin-Turaev construction: it is algebraic and relies on the representation theory of quantum groups. In this talk I will instead focus on the properties of these invariants and explain why I think they are a good candidate for quantum Chern-Simons theory with noncompact gauge group SL??(??). I will also discuss a connection with (and a generalization of) the Volume Conjecture.
Sergey Cherkis : Gravitational Instantons: the Tesseron Landscape
- Geometry and Topology ( 0 Views )Since their introduction in Euclidean quantum gravity in mid-70??s, hyperkaehler Gravitational Instantons (aka tesserons) found their use in string theory and in supersymmetric quantum field theory. Their classification was recently completed and now their parameter space is being explored. We propose a systematic program of realizing each of these spaces as a moduli space of monopoles: the monopolization program. Monopolization reveals the combinatorial and geometric structure of the parameter space of all these spaces, equips each space with various natural structures (tautological bundles, Dirac-type operators, etc), and connects different types of integrable systems associated to these gravitational instantons.
Laura Wakelin : Finding characterising slopes for all knots
- Geometry and Topology ( 0 Views )A slope p/q is characterising for a knot K if the oriented homeomorphism type of the 3-manifold obtained by performing Dehn surgery of slope p/q on K uniquely determines the knot K. For any knot K, there exists a bound C(K) such that any slope p/q with |q|?C(K) is characterising for K. This bound has previously been constructed for certain classes of knots, including torus knots, hyperbolic knots and composite knots. In this talk, I will give an overview of joint work with Patricia Sorya in which we complete this realisation problem for all remaining knots.
Tye Lidman : Cosmetic surgeries and Chern-Simons invariants
- Geometry and Topology ( 0 Views )Dehn surgery is a fundamental construction in topology where one removes a neighborhood of a knot from the three-sphere and reglues to obtain a new three-manifold. The Cosmetic Surgery Conjecture predicts two different surgeries on the same knot always gives different three-manifolds. We discuss how gauge theory, in particular, the Chern-Simons functional, can help approach this problem. This technique allows us to solve the conjecture in essentially all but one case. This is joint work with Ali Daemi and Mike Miller Eismeier.
Eylem Zeliha Yildiz : Braids in planar open books and fillable surgeries.
- Geometry and Topology ( 129 Views )We'll give a useful description of braids in $\underset{n}{\#}(S^1\times S^2)$ using surgery diagrams, which will allow us to address families of knots in lens spaces that admit fillable positive contact surgery. We also demonstrate that smooth $16$ surgery to the knot $P(-2,3,7)$ bounds a rational ball, which admits a Stein handlebody. This answers a question left open by Thomas Mark and Bülent Tosun.
Mark Stern : Introduction to p-harmonic forms, L^p Hodge theory, and L^p cohomology
- Geometry and Topology ( 114 Views )In this talk I will lay the foundations of the geometry of p-harmonic forms and L^p-Hodge theory. As an application, I will give strong evidence for (half of) a conjecture of Gromov on the L^p cohomology of negatively curved symmetric spaces.
Lenny Ng : New algebraic invariants of Legendrian links
- Geometry and Topology ( 77 Views )For the past 25 years, a key player in contact topology has been the Floer-theoretic invariant called Legendrian contact homology. I'll discuss a package of new invariants for Legendrian knots and links that builds on Legendrian contact homology and is derived from rational symplectic field theory. This includes a Poisson bracket on Legendrian contact homology and a symplectic structure on augmentation varieties. Time permitting, I'll also describe an unexpected connection to cluster theory for a family of Legendrian links associated to positive braids. Parts of this are joint work in progress with Roger Casals, Honghao Gao, Linhui Shen, and Daping Weng.
Anna Skorobogatova : Area-minimizing currents: structure of singularities and uniqueness of tangent cones
- Geometry and Topology ( 79 Views )The problem of determining the size and structure of the interior singular set of area-minimizing surfaces has been studied thoroughly in a number of different frameworks, with many ground-breaking contributions. In the framework of integral currents, when the surface has higher codimension than 1, the presence of singular points with flat tangent cones creates an obstruction to easily understanding the interior singularities. Until recently, little was known in this direction, particularly for surfaces of dimension higher than two, beyond Almgren??s celebrated dimension estimate on the interior singular set. In this talk I will discuss joint works with Camillo De Lellis and Paul Minter, where we establish (m-2)-rectifiability of the interior singular set of an m-dimensional area-minimizing integral current and classify tangent cones at \mathcal{H}^{m-2}-a.e. interior point.