Quicklists
public 01:34:44

Yossi Farjoun : Solving Conservation Law and Balance Equations by Particle Management

  -   Applied Math and Analysis ( 101 Views )

Conservation equations are at the heart of many interesting and important problems. Examples come from physics, chemistry, biology, traffic and many more. Analytically, hyperbolic equations have a beautiful structure due to the existence of characteristics. These provide the possibility of transforming a conservation PDE into a system of ODE and thus greatly reducing the computational effort required to solve such problems. However, even in one dimension, one encounters problems after a short time.

The most obvious difficulty that needs to be dealt with has to do with the creation of shocks, or in other words, the crossing of characteristics. With a particle based method one would like to avoid a situation when one particle overtakes a neighboring one. However, since shocks are inherent to many hyperbolic equations and relevant to the problems that one would like to solve, it would be good not to ``smooth away'' the shock but rather find a good representation of it and a good solution for the offending particles.

In this talk I will present a new particle based method for solving (one dimensional, scalar) conservation law equations. The guiding principle of the method is the conservative property of the underlying equation. The basic method is conservative, entropy decreasing, variation diminishing and exact away from shocks. A recent extension allows solving equations with a source term, and also provides ``exact'' solutions to the PDE. The method compares favorably to other benchmark solvers, for example CLAWPACK, and requires less computation power to reach the same resolution. A few examples will be shown to illustrate the method, with its various extensions. Due to the current limitation to 1D scalar, the main application we are looking at is traffic flow on a large network. Though we still hope to manage to extend the method to either systems or higher dimensions (each of these extensions has its own set of difficulties), I would be happy to discuss further possible applications or suggestions for extensions.

public 01:34:49

Gregory Beylkin : Solving Equations using nonlinear approximations

  -   Applied Math and Analysis ( 91 Views )

The idea of using nonlinear approximations as a tool for solving equations is as natural as that of using bases and, in fact, was proposed in 1960 in the context of quantum chemistry. The usual approach to solving partial differential and integral equations is to select a basis (possibly a multiresolution basis) or a grid, project equations onto such basis and solve the resulting discrete equations. The nonlinear alternative is to look for the solution within a large lass of functions (larger than any basis) by constructing optimal or near optimal approximations at every step of an algorithm for solving the equations. While this approach can theoretically be very efficient, the difficulties of constructing optimal approximations prevented any significant use of it in practice. However, during the last 15 years, nonlinear approximations have been successfully used to approximate operator kernels via exponentials or Gaussians to any user-specified accuracy, thus enabling a number of multidimensional multiresolution algorithms. In a new development several years ago, we constructed a fast and accurate reduction algorithm for optimal approximation of functions via exponentials or Gaussians (or, in a dual form, by rational functions) than can be used for solving partial differential and integral equations equations. We present two examples of the resulting solvers: one for the viscous Burgers' equation and another for solving the Hartree-Fock equations of quantum chemistry. Burgers' equation is often used as a testbed for numerical methods: if the viscosity \vu; is small, its solutions develop sharp (moving) transition regions of width O (\vu) presenting significant challenges for numerical methods. Using nonlinear approximations for solving the Hartree-Fock equations is the first step to a wider use of the approach in quantum chemistry. We maintain a functional form for the spatial orbitals as a linear combinations of products of decaying exponentials and spherical harmonics entered at the nuclear cusps. While such representations are similar to the classial Slater-type orbitals, in the course of computation we optimize both the exponents and the coefficients in order to achieve an efficient representation of solutions and to obtain guaranteed error bounds.

public 01:34:50

Selim Esedoglu : Algorithms for anisotropic mean curvature flow of networks, with applications to materials science

  -   Applied Math and Analysis ( 98 Views )

Motion by mean curvature for a network of surfaces arises in many applications. An important example is the evolution of microstructure in a polycrystalline material under heat treatment. Most metals and ceramics are of this type: They consist of many small single-crystal pieces of differing orientation, called grains, that are stuck together. A famous model proposed by Mullins in the 60s describes the dynamics of the network of surfaces that separate neighboring grains from one another in such a material as gradient descent for a weighted sum of the (possibly anisotropic) areas of the surfaces. The resulting dynamics is motion by weighted mean curvature for the surfaces in the network, together with certain conditions that need to be satisfied at junctions along which three or more surfaces may intersect. Typically, many topological changes occur during the evolution, as grains shrink and disappear, pinch off, or junctions collide. A very elegant algorithm -- known as threshold dynamics -- for the motion by mean curvature of a surface was given by Merriman, Bence, and Osher: It generates the whole evolution simply by alternating two very simple operations: convolution with a Gaussian kernel, and thresholding. It also works for networks, provided that all surfaces in the network have isotropic surface energies with equal weights. Its correct extension to the more general setting of unequal weights and possibly anisotropic (normal dependent) surface energies remained elusive, despite keen interest in this setting from materials scientists. In joint work with Felix Otto, we give a variational formulation of the original threshold dynamics algorithm by identifying a Lyapunov functional for it. In turn, the variational formulation shows how to extend the algorithm correctly to the more general settings that are of interest for materials scientists (joint work with Felix Otto and Matt Elsey). Examples of how to use the new algorithms to investigate unsettled questions about grain size distribution and its evolution will also be given.

public 01:14:39

Lucy Zhang : Modeling and Simulations of Fluid and Deformable-Structure Interactions in Bio-Mechanical Systems

  -   Applied Math and Analysis ( 154 Views )

Fluid-structure interactions exist in many aspects of our daily lives. Some biomedical engineering examples are blood flowing through a blood vessel and blood pumping in the heart. Fluid interacting with moving or deformable structures poses more numerical challenges for its complexity in dealing with transient and simultaneous interactions between the fluid and solid domains. To obtain stable, effective, and accurate solutions is not trivial. Traditional methods that are available in commercial software often generate numerical instabilities.

In this talk, a novel numerical solution technique, Immersed Finite Element Method (IFEM), is introduced for solving complex fluid-structure interaction problems in various engineering fields. The fluid and solid domains are fully coupled, thus yield accurate and stable solutions. The variables in the two domains are interpolated via a delta function that enables the use of non-uniform grids in the fluid domain, which allows the use of arbitrary geometry shapes and boundary conditions. This method extends the capabilities and flexibilities in solving various biomedical, traditional mechanical, and aerospace engineering problems with detailed and realistic mechanics analysis. Verification problems will be shown to validate the accuracy and effectiveness of this numerical approach. Several biomechanical problems will be presented: 1) blood flow in the left atrium and left atrial appendage which is the main source of blood in patients with atrial fibrillation. The function of the appendage is determined through fluid-structure interaction analysis, 2) examine blood cell and cell interactions under different flow shear rates. The formation of the cell aggregates can be predicted when given a physiologic shear rate.