Quicklists
public 01:34:55

Reema Al-Aifari : Spectral Analysis of the truncated Hilbert Transform arising in limited data tomography

  -   Applied Math and Analysis ( 121 Views )

In Computerized Tomography a 2D or 3D object is reconstructed from projection data (Radon transform data) from multiple directions. When the X-ray beams are sufficiently wide to fully embrace the object and when the beams from a sufficiently dense set of directions around the object can be used, this problem and its solution are well understood. When the data are more limited the image reconstruction problem becomes much more challenging; in the figure below only the region within the circle of the Field Of View is illuminated from all angles. In this talk we consider a limited data problem in 2D Computerized Tomography that gives rise to a restriction of the Hilbert transform as an operator HT from L2(a2,a4) to L2(a1,a3) for real numbers a1 < a2 < a3 < a4. We present the framework of tomographic reconstruction from limited data and the method of differentiated back-projection (DBP) which gives rise to the operator HT. The reconstruction from the DBP method requires recovering a family of 1D functions f supported on compact intervals [a2,a4] from its Hilbert transform measured on intervals [a1, a3] that might only overlap, but not cover [a2, a4]. We relate the operator HT to a self-adjoint two-interval Sturm-Liouville prob- lem, for which the spectrum is discrete. The Sturm-Liouville operator is found to commute with HT , which then implies that the spectrum of HT∗ HT is discrete. Furthermore, we express the singular value decomposition of HT in terms of the so- lutions to the Sturm-Liouville problem. We conclude by illustrating the properties obtained for HT numerically.

public 01:34:55

Lin Lin : Elliptic preconditioner for accelerating the self consistent field iteration of Kohn-Sham density functional theory

  -   Applied Math and Analysis ( 127 Views )

Kohn-Sham density functional theory (KSDFT) is the most widely used electronic structure theory for molecules and condensed matter systems. Although KSDFT is often stated as a nonlinear eigenvalue problem, an alternative formulation of the problem, which is more convenient for understanding the convergence of numerical algorithms for solving this type of problem, is based on a nonlinear map known as the Kohn-Sham map. The solution to the KSDFT problem is a fixed point of this nonlinear map. The simplest way to solve the KSDFT problem is to apply a fixed point iteration to the nonlinear equation defined by the Kohn-Sham map. This is commonly known as the self-consistent field (SCF) iteration in the condensed matter physics and chemistry communities. However, this simple approach often fails to converge. The difficulty of reaching convergence can be seen from the analysis of the Jacobian matrix of the Kohn-Sham map, which we will present in this talk. The Jacobian matrix is directly related to the dielectric matrix or the linear response operator in the condense matter community. We will show the different behaviors of insulating and metallic systems in terms of the spectral property of the Jacobian matrix. A particularly difficult case for SCF iteration is systems with mixed insulating and metallic nature, such as metal padded with vacuum, or metallic slabs. We discuss how to use these properties to approximate the Jacobian matrix and to develop effective preconditioners to accelerate the convergence of the SCF iteration. In particular, we introduce a new technique called elliptic preconditioner, which unifies the treatment of large scale metallic and insulating systems at low temperature. Numerical results show that the elliptic preconditioner can effectively accelerate the SCF convergence of metallic systems, insulating systems, and systems of mixed metallic and insulating nature. (Joint work with Chao Yang)

public 01:34:55

John Neu : Resonances in Geometric Optics

  -   Applied Math and Analysis ( 98 Views )

Consider wavefront propagation in the plane, in a medium whose propagation speed is doubly periodic. Think of a "wavefront" as the moving boundary between "light" and "darkness." There are "macroscopic plane wavefronts", for which the wavefront is everywhere and always bounded close to a moving line with constant normal velocity. The normal velocity depends on direction. Some nice function of angle, and we ought to compute it, no? To contemplate this calculation, visualize an infinite planar vineyard, with a square lattice of grape stakes. Gaze outward from the the grape stake at the origin. In some directions, the line of sight is blocked by a stake, and we'll call these directions "rational." The rational directions are dense, but of zero measure on the unit circle. The simplest formal asymptotics of the direction dependent speed produces a strange result: A formal series, one term for each rational direction. The graph of an individual term as a function of angle looks like the amplitude response of a forced oscillator, with a plus infinity vertical asymptote as you scan through the rational direction. Nevertheless, the series converges absolutely for almost all directions on the unit circle. (In the vineyard, almost all lines of sight escape to infinity.) At the outset, the prognosis seems: "Difficult and obscure." The problem of direction dependent speed does not LOOK like a venue for formal classical asymptotics, but that's what this talk proposes. The ingredients are standard matched asymptotic expansions, and baby number theory concerning period cells of the vineyard.

public 01:34:55

Boyce E. Griffith : Multiphysics and multiscale modeling of cardiac dynamics

  -   Applied Math and Analysis ( 123 Views )

The heart is a coupled electro-fluid-mechanical system. The contractions of the cardiac muscle are stimulated and coordinated by the electrophysiology of the heart; these contractions in turn affect the electrical function of the heart by altering the macroscopic conductivity of the tissue and by influencing stretch-activated transmembrane ion channels. In this talk, I will present mathematical models and adaptive numerical methods for describing cardiac mechanics, fluid dynamics, and electrophysiology, as well as applications of these models and methods to cardiac fluid-structure and electro-mechanical interaction. I will also describe novel models of cardiac electrophysiology that go beyond traditional macroscopic (tissue-scale) descriptions of cardiac electrical impulse propagation by explicitly incorporating details of the cellular microstructure into the model equations. Standard models of cardiac electrophysiology, such as the monodomain or bidomain equations, account for this cellular microstructure in only a homogenized or averaged sense, and we have demonstrated that such homogenized models yield incorrect results in certain pathophysiological parameter regimes. To obtain accurate model predictions in these parameter regimes without resorting to a fully cellular model, we have developed an adaptive multiscale model of cardiac conduction that uses detailed cellular models only where needed, while resorting to the more efficient macroscale equations where those equations suffice. Applications of these methods will be presented to simulating cardiac and cardiovascular dynamics in whole heart models, as well as in detailed models of cardiac valves and novel models of aortic dissection. Necessary physiological details will be introduced as needed.

public 01:23:18

Massimo Fornasier : Sparse Stabilization and Optimal Control in Consensus Emergence

  -   Applied Math and Analysis ( 95 Views )

From a mathematical point of view self-organization can be described as the formation of patterns, where certain dynamical systems modeling social dynamics tend autonomously to converge. The fascinating mechanism to be revealed by such a modeling is how to connect the microscopical and usually binary rules or social forces of interaction between individuals with the eventual global behavior or group pattern, forming as a superposition in time of the different microscopical effects. In this talk we explore mechanisms to go beyond self-organization, in particular how to externally control such dynamical systems in order to eventually enforce pattern formation also in those situations where this wished phenomenon does not result from spontaneous and autonomous convergence. Our focus is on dynamical systems of Cucker-Smale type, modeling consensus emergence, and we question the existence of stabilization and optimal control strategies which require the minimal amount of external intervention for nevertheless inducing consensus in a group of interacting agents. On the one hand and formally, our main result realizes the connection between certain variational problems involving L1-norm terms and optimal sparse controls. On the other hand, our findings can be informally stated in terms of the general principle for which "A policy maker should always consider more favorable to intervene with stronger actions on the fewest possible instantaneous optimal leaders than trying to control more agents, with minor strength".