Quicklists
public 01:34:42

Jacob Bedrossian : Positive Lyapunov exponents for 2d Galerkin-Navier-Stokes with stochastic forcing

  -   Applied Math and Analysis ( 436 Views )

In this talk we discuss our recently introduced methods for obtaining strictly positive lower bounds on the top Lyapunov exponent of high-dimensional, stochastic differential equations such as the weakly-damped Lorenz-96 (L96) model or Galerkin truncations of the 2d Navier-Stokes equations (joint with Alex Blumenthal and Sam Punshon-Smith). This hallmark of chaos has long been observed in these models, however, no mathematical proof had previously been made for any type of deterministic or stochastic forcing. The method we proposed combines (A) a new identity connecting the Lyapunov exponents to a Fisher information of the stationary measure of the Markov process tracking tangent directions (the so-called "projective process"); and (B) an L1-based hypoelliptic regularity estimate to show that this (degenerate) Fisher information is an upper bound on some fractional regularity. For L96 and GNSE, we then further reduce the lower bound of the top Lyapunov exponent to proving that the projective process satisfies Hörmander's condition. I will also discuss the recent work of Sam Punshon-Smith and I on verifying this condition for the 2d Galerkin-Navier-Stokes equations in a rectangular, periodic box of any aspect ratio using some special structure of matrix Lie algebras and ideas from computational algebraic geometry.

public 01:34:43

Bruce Donald : Some mathematical and computational challenges arising in structural molecular biology

  -   Applied Math and Analysis ( 304 Views )

Computational protein design is a transformative field with exciting prospects for advancing both basic science and translational medical research. New algorithms blend discrete and continuous mathematics to address the challenges of creating designer proteins. I will discuss recent progress in this area and some interesting open problems. I will motivate this talk by discussing how, by using continuous geometric representations within a discrete optimization framework, broadly-neutralizing anti-HIV-1 antibodies were computationally designed that are now being tested in humans - the designed antibodies are currently in eight clinical trials (See https://clinicaltrials.gov/ct2/results?cond=&term=VRC07&cntry=&state=&city=&dist= ), one of which is Phase 2a (NCT03721510). These continuous representations model the flexibility and dynamics of biological macromolecules, which are an important structural determinant of function. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. These distributions are not fully constrained by the limited information from experiments, making the problem ill-posed in the sense of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem must be regularized by making (hopefully reasonable) assumptions. I will present new ways to both represent and visualize correlated inter-domain protein motions (See Figure). We use Bingham distributions, based on a quaternion fit to circular moments of a physics-based quadratic form. To find the optimal solution for the distribution, we designed an efficient, provable branch-and-bound algorithm that exploits the structure of analytical solutions to the trigonometric moment problem. Hence, continuous conformational PDFs can be determined directly from NMR measurements. The representation works especially well for multi-domain systems with broad conformational distributions. Ultimately, this method has parallels to other branches of applied mathematics that balance discrete and continuous representations, including physical geometric algorithms, robotics, computer vision, and robust optimization. I will advocate for using continuous distributions for protein modeling, and describe future work and open problems.

public 01:34:50

Suncica Canic : Mathematical modeling for cardiovascular stenting

  -   Applied Math and Analysis ( 193 Views )

The speaker will talk about several projects that are taking place in an interdisciplinary endeavor between the researchers in the Mathematics Department at the University of Houston, the Texas Heart Institute, Baylor College of Medicine, the Mathematics Department at the University of Zagreb, and the Mathematics Department of the University of Lyon 1. The projects are related to non-surgical treatment of aortic abdominal aneurysm and coronary artery disease using endovascular prostheses called stents and stent-grafts. Through a collaboration between mathematicians, cardiovascular specialists and engineers we have developed a novel mathematical model to study blood flow in compliant (viscoelastic) arteries treated with stents and stent-grafts. The mathematical tools used in the derivation of the effective, reduced equations utilize asymptotic analysis and homogenization methods for porous media flows. The existence of a unique solution to the resulting fluid-structure interaction model is obtained by using novel techniques to study systems of mixed, hyperbolic-parabolic type. A numerical method, based on the finite element approach, was developed, and numerical solutions were compared with the experimental measurements. Experimental measurements based on ultrasound and Doppler methods were performed at the Cardiovascular Research Laboratory located at the Texas Heart Institute. Excellent agreement between the experiment and the numerical solution was obtained. This year marks a giant step forward in the development of medical devices and in the development of the partnership between mathematics and medicine: the FDA (the United States Food and Drug Administration) is getting ready to, for the first time, require mathematical modeling and numerical simulations to be used in the development of peripheral vascular devices. The speaker acknowledges research support from the NSF, NIH, and Texas Higher Education Board, and donations from Medtronic Inc. and Kent Elastomer Inc.

public 01:09:47

Casey Rodriguez : The Radiative Uniqueness Conjecture for Bubbling Wave Maps

  -   Applied Math and Analysis ( 191 Views )

One of the most fundamental questions in partial differential equations is that of regularity and the possible breakdown of solutions. We will discuss this question for solutions to a canonical example of a geometric wave equation; energy critical wave maps. Break-through works of Krieger-Schlag-Tataru, Rodnianski-Sterbenz and Rapha Ě?el-Rodnianski produced examples of wave maps that develop singularities in finite time. These solutions break down by concentrating energy at a point in space (via bubbling a harmonic map) but have a regular limit, away from the singular point, as time approaches the final time of existence. The regular limit is referred to as the radiation. This mechanism of breakdown occurs in many other PDE including energy critical wave equations, Schro Ě?dinger maps and Yang-Mills equations. A basic question is the following: â?˘ Can we give a precise description of all bubbling singularities for wave maps with the goal of finding the natural unique continuation of such solutions past the singularity? In this talk, we will discuss recent work (joint with J. Jendrej and A. Lawrie) which is the first to directly and explicitly connect the radiative component to the bubbling dynamics by constructing and classifying bubbling solutions with a simple form of prescribed radiation. Our results serve as an important first step in formulating and proving the following Radiative Uniqueness Conjecture for a large class of wave maps: every bubbling solution is uniquely characterized by itâ??s radiation, and thus, every bubbling solution can be uniquely continued past blow-up time while conserving energy.

public 01:34:32

Ioannis Kevrekidis : No Equations, No Variables, No Parameters, No Space, No Time -- Data, and the Crystal Ball Modeling of Complex/Multiscale Systems

  -   Applied Math and Analysis ( 184 Views )

Obtaining predictive dynamical equations from data lies at the heart of science and engineering modeling, and is the linchpin of our technology. In mathematical modeling one typically progresses from observations of the world (and some serious thinking!) first to selection of variables, then to equations for a model, and finally to the analysis of the model to make predictions. Good mathematical models give good predictions (and inaccurate ones do not) --- but the computational tools for analyzing them are the same: algorithms that are typically operating on closed form equations.
While the skeleton of the process remains the same, today we witness the development of mathematical techniques that operate directly on observations --- data, and appear to circumvent the serious thinking that goes into selecting variables and parameters and deriving accurate equations. The process then may appear to the user a little like making predictions by "looking into a crystal ball". Yet the "serious thinking" is still there and uses the same --- and some new --- mathematics: it goes into building algorithms that "jump directly" from data to the analysis of the model (which is now not available in closed form) so as to make predictions. Our work here presents a couple of efforts that illustrate this "new" path from data to predictions. It really is the same old path, but it is traveled by new means.

public 01:24:47

Franca Hoffmann : Gradient Flows: From PDE to Data Analysis.

  -   Applied Math and Analysis ( 184 Views )

Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches. In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs. We present recent results on properties of these equilibria and long-time asymptotics of solutions in the setting where attractive and repulsive forces are in competition. In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.

public 01:34:50

Hongkai Zhao : Approximate Separability of Greens Function for Helmholtz Equation in the High Frequency Limit

  -   Applied Math and Analysis ( 183 Views )

Approximate separable representations of GreenÂ?s functions for differential operators is a basic and important question in the analysis of differential equations, the development of efficient numerical algorithms and imaging. Being able to approximate a GreenÂ?s function as a sum with few separable terms is equivalent to low rank properties of corresponding numerical solution operators. This will allow for matrix compression and fast solution techniques. Green's functions for coercive elliptic differential operators have been shown to be highly separable and the resulting low rank property for discretized system was explored to develop efficient numerical algorithms. However, the case of Helmholtz equation in the high frequency limit is more challenging both mathematically and numerically. We introduce new tools based on the study of relation between two GreenÂ?s functions with different source points and a tight dimension estimate for the best linear subspace approximating a set of almost orthogonal vectors to prove new lower bounds for the number of terms in the representation for the Green's function for Helmholtz operator in the high frequency limit. Upper bounds are also derived. We give explicit sharp estimates for cases that are common in practice and present numerical examples. This is a joint work with Bjorn Engquist.

public 01:34:51

Bruce Pitman : CANCELLED

  -   Applied Math and Analysis ( 180 Views )

CANCELLED