Quicklists
public 01:14:39

Ralph Smith : Model Development and Control Design for High Performance Nonlinear Smart Material Systems

  -   Applied Math and Analysis ( 152 Views )

High performance transducers utilizing piezoceramic, electrostrictive, magnetostrictive or shape memory elements offer novel control capabilities in applications ranging from flow control to precision placement for nanoconstruction. To achieve the full potential of these materials, however, models, numerical methods and control designs which accommodate the constitutive nonlinearities and hysteresis inherent to the compounds must be employed. Furthermore, it is advantageous to consider material characterization, model development, numerical approximation, and control design in concert to fully exploit the novel sensor and actuator capabilities of these materials in coupled systems.

In this presentation, the speaker will discuss recent advances in the development of model-based control strategies for high performance smart material systems. The presentation will focus on the development of unified nonlinear hysteresis models, inverse compensators, reduced-order approximation techniques, and nonlinear control strategies for high precision or high drive regimes. The range for which linear models and control methods are applicable will also be outlined. Examples will be drawn from problems arising in structural acoustics, high speed milling, deformable mirror design, artificial muscle development, tendon design to minimize earthquake damage, and atomic force microscopy.

public 01:34:43

Ruiwen Shu : Flocking hydrodynamics with external potentials

  -   Applied Math and Analysis ( 128 Views )

We study the large-time behavior of hydrodynamic model which describes the collective behavior of continuum of agents, driven by pairwise alignment interactions with additional external potential forcing. The external force tends to compete with alignment which makes the large time behavior very different from the original Cucker-Smale (CS) alignment model, and far more interesting. Here we focus on uniformly convex potentials. In the particular case of \emph{quadratic} potentials, we are able to treat a large class of admissible interaction kernels, $\phi(r) \gtrsim (1+r^2)^{-\beta}$ with `thin' tails $\beta \leq 1$ --- thinner than the usual `fat-tail' kernels encountered in CS flocking $\beta\leq\nicefrac{1}{2}$: we discover unconditional flocking with exponential convergence of velocities \emph{and} positions towards a Dirac mass traveling as harmonic oscillator. For general convex potentials, we impose a necessary stability condition, requiring large enough alignment kernel to avoid crowd dispersion. We prove, by hypocoercivity arguments, that both the velocities \emph{and} positions of smooth solution must flock. We also prove the existence of global smooth solutions for one and two space dimensions, subject to critical thresholds in initial configuration space. It is interesting to observe that global smoothness can be guaranteed for sub-critical initial data, independently of the apriori knowledge of large time flocking behavior.