Quicklists
public 01:34:47

Julia Kimbell : Applications of upper respiratory tract modeling to risk assessment, medicine, and drug delivery

  -   Applied Math and Analysis ( 158 Views )

The upper respiratory tract is the portal of entry for inhaled air and anything we breath in with it. For most of us, the nasal passages do most of the work cleansing, humidifying, and warming inhaled air using a lining of highly vascularized tissue coated with mucus. This tissue is susceptible to damage from inhaled material, can adversely affect life quality if deformed or diseased, and is a potential route of systemic exposure via circulating blood. To understand nasal physiology and the effects of inhalants on nasal tissue, information on airflow, gas uptake and particle deposition patterns is needed for both laboratory animals and humans. This information is often difficult to obtain in vivo but may be estimated with three-dimensional computational fluid dynamics (CFD) models. At CIIT Centers for Health Research (CIIT-CHR), CFD models of nasal airflow and inhaled gas and particle transport have been used to test hypotheses about mechanisms of toxicity, help extrapolate laboratory animal data to people, and make predictions for human health risk assessments, as well as study surgical interventions and nasal drug delivery. In this talk an overview of CIIT-CHR's nasal airflow modeling program will be given with the goal of illustrating how CFD modeling can help researchers clarify, organize, and understand the complex structure, function, physiology, pathobiology, and utility of the nasal airways.

public 01:29:47

Elisabetta Matsumoto : Biomimetic 4D Printing

  -   Applied Math and Analysis ( 134 Views )

The nascent technique of 4D printing has the potential to revolutionize manufacturing in fields ranging from organs-on-a-chip to architecture to soft robotics. By expanding the pallet of 3D printable materials to include the use stimuli responsive inks, 4D printing promises precise control over patterned shape transformations. With the goal of creating a new manufacturing technique, we have recently introduced a biomimetic printing platform that enables the direct control of local anisotropy into both the elastic moduli and the swelling response of the ink.

We have drawn inspiration from nastic plant movements to design a phytomimetic ink and printing process that enables patterned dynamic shape change upon exposure to water, and possibly other external stimuli. Our novel fiber-reinforced hydrogel ink enables local control over anisotropies not only in the elastic moduli, but more importantly in the swelling. Upon hydration, the hydrogel changes shape accord- ing the arbitrarily complex microstructure imparted during the printing process.

To use this process as a design tool, we must solve the inverse problem of prescribing the pattern of anisotropies required to generate a given curved target structure. We show how to do this by constructing a theory of anisotropic plates and shells that can respond to local metric changes induced by anisotropic swelling. A series of experiments corroborate our model by producing a range of target shapes inspired by the morphological diversity of flower petals.

public 01:34:34

Peng Chen : Sparse Quadrature for High-Dimensional Integration with Gaussian Measure: Breaking the Curse of Dimensionality

  -   Applied Math and Analysis ( 56 Views )

High-dimensional integration problems, which suffer from curse of dimensionality, are faced in many computational applications, such as uncertainty quantification, Bayesian inverse problems, PDE-constrained stochastic optimization, computational finance, etc. Recent work has made great progress in theories and algorithms for treating uniform measure. However, high-dimensional integration with Gaussian measure, commonly used in these fields, is less studied. In this talk I will present a sparse quadrature that breaks the curse of dimensionality for high/infinite-dimensional integration with Gaussian measure. Both a priori and a goal-oriented adaptive construction algorithms for the sparse quadrature are proposed by tensorization of univariate quadratures in a carefully selected (admissible) index set. Several univariate quadrature rules, including Gauss--Hermite, transformed Gauss--Kronrod--Patterson, and Genz--Keister are investigated. The best-$N$ term algebraic convergence rate $N^{-s}$is obtained under certain assumption on the regularity of the parametric map with respect to the Gaussian distributed parameters. The rate $s$ is shown to be dependent only on a sparsity parameter that controls the regularity and independent of the number of active parameter dimensions. Examples of nonlinear parametric functions and parametric partial differential equations (PDE) are provided to illustrate the regularity assumption. Finally, I will present numerical experiments on the integration of parametric function, parametric PDE, and parametric Bayesian inversion for the demonstration of the dimension-independent convergence of the sparse quadrature errors. The convergence is shown to be much faster than that of Monte Carlo quadrature errors for the test problems with sufficient sparsity.

public 01:03:36

Thomas Y. Hou : Singularity Formation in 3-D Vortex Sheets

  -   Applied Math and Analysis ( 30 Views )

One of the classical examples of hydrodynamic instability occurs when two fluids are separated by a free surface across which the tangential velocity has a jump discontinuity. This is called Kelvin-Helmholtz Instability. Kelvin-Helmholtz instability is a fundamental instability of incompressible fluid flow at high Reynolds number. The idealization of a shear layered flow as a vortex sheet separating two regions of potential flow has often been used as a model to study mixing properties, boundary layers and coherent structures of fluids. In a joint work with G. Hu and P. Zhang, we study the singularity of 3-D vortex sheets using a new approach. First, we derive a leading order approximation to the boundary integral equation governing the 3-D vortex sheet. This leading order equation captures the most singular contribution of the integral equation. Moreover, after applying a transformation to the physical variables, we found that this leading order 3-D vortex sheet equation de-generates into a two-dimensional vortex sheet equation in the direction of the tangential velocity jump. This rather surprising result confirms that the tangential velocity jump is the physical driving force of the vortex sheet singularities. It also shows that the singularity type of the three-dimensional problem is similar to that of the two-dimensional problem. Detailed numerical study will be provided to support the analytical results, and to reveal the generic form and the three-dimensional nature of the vortex sheet singularity.