Quicklists
public 01:34:42

Jacob Bedrossian : Positive Lyapunov exponents for 2d Galerkin-Navier-Stokes with stochastic forcing

  -   Applied Math and Analysis ( 436 Views )

In this talk we discuss our recently introduced methods for obtaining strictly positive lower bounds on the top Lyapunov exponent of high-dimensional, stochastic differential equations such as the weakly-damped Lorenz-96 (L96) model or Galerkin truncations of the 2d Navier-Stokes equations (joint with Alex Blumenthal and Sam Punshon-Smith). This hallmark of chaos has long been observed in these models, however, no mathematical proof had previously been made for any type of deterministic or stochastic forcing. The method we proposed combines (A) a new identity connecting the Lyapunov exponents to a Fisher information of the stationary measure of the Markov process tracking tangent directions (the so-called "projective process"); and (B) an L1-based hypoelliptic regularity estimate to show that this (degenerate) Fisher information is an upper bound on some fractional regularity. For L96 and GNSE, we then further reduce the lower bound of the top Lyapunov exponent to proving that the projective process satisfies Hörmander's condition. I will also discuss the recent work of Sam Punshon-Smith and I on verifying this condition for the 2d Galerkin-Navier-Stokes equations in a rectangular, periodic box of any aspect ratio using some special structure of matrix Lie algebras and ideas from computational algebraic geometry.

public 01:24:47

Franca Hoffmann : Gradient Flows: From PDE to Data Analysis.

  -   Applied Math and Analysis ( 184 Views )

Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches. In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs. We present recent results on properties of these equilibria and long-time asymptotics of solutions in the setting where attractive and repulsive forces are in competition. In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.

public 02:29:55

Leonid Berlyand : Flux norm approach to finite-dimensional homogenization approximation with non-separated scales and high contrast

  -   Applied Math and Analysis ( 164 Views )

PDF Abstract
Classical homogenization theory deals with mathematical models of strongly inhomogeneous media described by PDEs with rapidly oscillating coefficients of the form A(x/\epsilon), \epsilon → 0. The goal is to approximate this problem by a homogenized (simpler) PDE with slowly varying coefficients that do not depend on the small parameter \epsilon. The original problem has two scales: fine O(\epsilon) and coarse O(1), whereas the homogenized problem has only a coarse scale. The homogenization of PDEs with periodic or ergodic coefficients and well-separated scales is now well understood. In a joint work with H. Owhadi (Caltech) we consider the most general case of arbitrary L∞ coefficients, which may contain infinitely many scales that are not necessarily well-separated. Specifically, we study scalar and vectorial divergence-form elliptic PDEs with such coefficients. We establish two finite-dimensional approximations to the solutions of these problems, which we refer to as finite-dimensional homogenization approximations. We introduce a flux norm and establish the error estimate in this norm with an explicit and optimal error constant independent of the contrast and regularity of the coefficients. A proper generalization of the notion of cell problems is the key technical issue in our consideration. The results described above are obtained as an application of the transfer property as well as a new class of elliptic inequalities which we conjecture. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization. These inequalities are closely related to the issue of H^2 regularity of solutions of elliptic non-divergent PDEs with non smooth coefficients.

public 01:34:49

Andrew Christlieb : A high order adaptive mesh refinement algorithm for hyperbolic conservation laws based on weighted essentially non-oscillatory methods

  -   Applied Math and Analysis ( 154 Views )

In this work, we combine the adaptive mesh refinement (AMR) framework with high order finite difference weighted essentially non-oscillatory (WENO) method in space and TVD Runge-Kutta (RK) method in time (WENO-RK) for hyperbolic conservation laws. Our goal is to realize mesh adaptivity in the AMR framework, while maintaining very high (higher than second) order accuracy of the WENO-RK method in the finite difference setting. To maintain high order accuracy, we use high order prolongation in both space (WENO interpolation) and time (Hermite interpolation) from the coarse to find grid, and at ghost points. The resulting scheme is high order accuracy, robust and efficient, due to the mesh adaptivity and has high order accuracy in both space and time. We have experimented the third and fifth order AMR-finite difference WENO-RK schemes. The accuracy of the scheme is demonstrated by applying the method to several smooth test problems, and the quality and efficiency are demonstrated by applying the method to the shallow water and Euler equations with different challenging initial conditions. From our numerical experiment, we conclude a significant improvement of the fifth order AMR - WENO scheme over the third order one, not only in accuracy for smooth problems, but also in its ability in resolving complicated solution structures, which we think is due to the very low numerical diffusion of high order schemes. This work is in collaboration with Dr. Chaopeng Shen and Professor Jing-Mei Qiu.

public 01:14:39

Ralph Smith : Model Development and Control Design for High Performance Nonlinear Smart Material Systems

  -   Applied Math and Analysis ( 152 Views )

High performance transducers utilizing piezoceramic, electrostrictive, magnetostrictive or shape memory elements offer novel control capabilities in applications ranging from flow control to precision placement for nanoconstruction. To achieve the full potential of these materials, however, models, numerical methods and control designs which accommodate the constitutive nonlinearities and hysteresis inherent to the compounds must be employed. Furthermore, it is advantageous to consider material characterization, model development, numerical approximation, and control design in concert to fully exploit the novel sensor and actuator capabilities of these materials in coupled systems.

In this presentation, the speaker will discuss recent advances in the development of model-based control strategies for high performance smart material systems. The presentation will focus on the development of unified nonlinear hysteresis models, inverse compensators, reduced-order approximation techniques, and nonlinear control strategies for high precision or high drive regimes. The range for which linear models and control methods are applicable will also be outlined. Examples will be drawn from problems arising in structural acoustics, high speed milling, deformable mirror design, artificial muscle development, tendon design to minimize earthquake damage, and atomic force microscopy.