Quicklists
public 01:34:49

Xiantao Li : The Mori-Zwanzig formalism for the reduction of complex dynamics models

  -   Applied Math and Analysis ( 128 Views )

Mathematical models of complex physical processes often involve large number of degrees of freedom as well as events occurring on different time scales. Therefore, direct simulations based on these models face tremendous challenge. This focus of this talk is on the Mori-Zwanzig (MZ) projection formalism for reducing the dimension of a complex dynamical system. The goal is to mathematically derive a reduced model with much fewer variables, while still able to capture the essential properties of the system. In many cases, this formalism also eliminates fast modes and makes it possible to explore events over longer time scales. The models that are directly derived from the MZ projection are typically too abstract to be practically implemented. We will first discuss cases where the model can be simplified to generalized Langevin equations (GLE). Furthermore, we introduce systematic numerical approximations to the GLE, in which the fluctuation-dissipation theorem (FDT) is automatically satisfied. More importantly, these approximations lead to a hierarchy of reduced models with increasing accuracy, which would also be useful for an adaptive model refinement (AMR). Examples, including the NLS, atomistic models of materials defects, and molecular models of proteins, will be presented to illustrate the potential applications of the methods.

public 01:14:42

Rongjie Lai : Understanding Manifold-structured Data via Geometric Modeling and Learning

  -   Applied Math and Analysis ( 113 Views )

Analyzing and inferring the underlying global intrinsic structures of data from its local information are critical in many fields. In practice, coherent structures of data allow us to model data as low dimensional manifolds, represented as point clouds, in a possible high dimensional space. Different from image and signal processing which handle functions on flat domains with well-developed tools for processing and learning, manifold-structured data sets are far more challenging due to their complicated geometry. For example, the same geometric object can take very different coordinate representations due to the variety of embeddings, transformations or representations (imagine the same human body shape can have different poses as its nearly isometric embedding ambiguities). These ambiguities form an infinite dimensional isometric group and make higher-level tasks in manifold-structured data analysis and understanding even more challenging. To overcome these ambiguities, I will first discuss modeling based methods. This approach uses geometric PDEs to adapt the intrinsic manifolds structure of data and extracts various invariant descriptors to characterize and understand data through solutions of differential equations on manifolds. Inspired by recent developments of deep learning, I will also discuss our recent work of a new way of defining convolution on manifolds and demonstrate its potential to conduct geometric deep learning on manifolds. This geometric way of defining convolution provides a natural combination of modeling and learning on manifolds. It enables further applications of comparing, classifying and understanding manifold-structured data by combing with recent advances in deep learning.