Quicklists
public 01:34:50

Suncica Canic : Mathematical modeling for cardiovascular stenting

  -   Applied Math and Analysis ( 193 Views )

The speaker will talk about several projects that are taking place in an interdisciplinary endeavor between the researchers in the Mathematics Department at the University of Houston, the Texas Heart Institute, Baylor College of Medicine, the Mathematics Department at the University of Zagreb, and the Mathematics Department of the University of Lyon 1. The projects are related to non-surgical treatment of aortic abdominal aneurysm and coronary artery disease using endovascular prostheses called stents and stent-grafts. Through a collaboration between mathematicians, cardiovascular specialists and engineers we have developed a novel mathematical model to study blood flow in compliant (viscoelastic) arteries treated with stents and stent-grafts. The mathematical tools used in the derivation of the effective, reduced equations utilize asymptotic analysis and homogenization methods for porous media flows. The existence of a unique solution to the resulting fluid-structure interaction model is obtained by using novel techniques to study systems of mixed, hyperbolic-parabolic type. A numerical method, based on the finite element approach, was developed, and numerical solutions were compared with the experimental measurements. Experimental measurements based on ultrasound and Doppler methods were performed at the Cardiovascular Research Laboratory located at the Texas Heart Institute. Excellent agreement between the experiment and the numerical solution was obtained. This year marks a giant step forward in the development of medical devices and in the development of the partnership between mathematics and medicine: the FDA (the United States Food and Drug Administration) is getting ready to, for the first time, require mathematical modeling and numerical simulations to be used in the development of peripheral vascular devices. The speaker acknowledges research support from the NSF, NIH, and Texas Higher Education Board, and donations from Medtronic Inc. and Kent Elastomer Inc.

public 01:09:47

Casey Rodriguez : The Radiative Uniqueness Conjecture for Bubbling Wave Maps

  -   Applied Math and Analysis ( 191 Views )

One of the most fundamental questions in partial differential equations is that of regularity and the possible breakdown of solutions. We will discuss this question for solutions to a canonical example of a geometric wave equation; energy critical wave maps. Break-through works of Krieger-Schlag-Tataru, Rodnianski-Sterbenz and Rapha Ì?el-Rodnianski produced examples of wave maps that develop singularities in finite time. These solutions break down by concentrating energy at a point in space (via bubbling a harmonic map) but have a regular limit, away from the singular point, as time approaches the final time of existence. The regular limit is referred to as the radiation. This mechanism of breakdown occurs in many other PDE including energy critical wave equations, Schro Ì?dinger maps and Yang-Mills equations. A basic question is the following: â?¢ Can we give a precise description of all bubbling singularities for wave maps with the goal of finding the natural unique continuation of such solutions past the singularity? In this talk, we will discuss recent work (joint with J. Jendrej and A. Lawrie) which is the first to directly and explicitly connect the radiative component to the bubbling dynamics by constructing and classifying bubbling solutions with a simple form of prescribed radiation. Our results serve as an important first step in formulating and proving the following Radiative Uniqueness Conjecture for a large class of wave maps: every bubbling solution is uniquely characterized by itâ??s radiation, and thus, every bubbling solution can be uniquely continued past blow-up time while conserving energy.

public 01:34:50

Hongkai Zhao : Approximate Separability of Greens Function for Helmholtz Equation in the High Frequency Limit

  -   Applied Math and Analysis ( 183 Views )

Approximate separable representations of GreenÂ?s functions for differential operators is a basic and important question in the analysis of differential equations, the development of efficient numerical algorithms and imaging. Being able to approximate a GreenÂ?s function as a sum with few separable terms is equivalent to low rank properties of corresponding numerical solution operators. This will allow for matrix compression and fast solution techniques. Green's functions for coercive elliptic differential operators have been shown to be highly separable and the resulting low rank property for discretized system was explored to develop efficient numerical algorithms. However, the case of Helmholtz equation in the high frequency limit is more challenging both mathematically and numerically. We introduce new tools based on the study of relation between two GreenÂ?s functions with different source points and a tight dimension estimate for the best linear subspace approximating a set of almost orthogonal vectors to prove new lower bounds for the number of terms in the representation for the Green's function for Helmholtz operator in the high frequency limit. Upper bounds are also derived. We give explicit sharp estimates for cases that are common in practice and present numerical examples. This is a joint work with Bjorn Engquist.

public 01:34:51

Bruce Pitman : CANCELLED

  -   Applied Math and Analysis ( 180 Views )

CANCELLED

public 01:14:39

Lucy Zhang : Modeling and Simulations of Fluid and Deformable-Structure Interactions in Bio-Mechanical Systems

  -   Applied Math and Analysis ( 164 Views )

Fluid-structure interactions exist in many aspects of our daily lives. Some biomedical engineering examples are blood flowing through a blood vessel and blood pumping in the heart. Fluid interacting with moving or deformable structures poses more numerical challenges for its complexity in dealing with transient and simultaneous interactions between the fluid and solid domains. To obtain stable, effective, and accurate solutions is not trivial. Traditional methods that are available in commercial software often generate numerical instabilities.

In this talk, a novel numerical solution technique, Immersed Finite Element Method (IFEM), is introduced for solving complex fluid-structure interaction problems in various engineering fields. The fluid and solid domains are fully coupled, thus yield accurate and stable solutions. The variables in the two domains are interpolated via a delta function that enables the use of non-uniform grids in the fluid domain, which allows the use of arbitrary geometry shapes and boundary conditions. This method extends the capabilities and flexibilities in solving various biomedical, traditional mechanical, and aerospace engineering problems with detailed and realistic mechanics analysis. Verification problems will be shown to validate the accuracy and effectiveness of this numerical approach. Several biomechanical problems will be presented: 1) blood flow in the left atrium and left atrial appendage which is the main source of blood in patients with atrial fibrillation. The function of the appendage is determined through fluid-structure interaction analysis, 2) examine blood cell and cell interactions under different flow shear rates. The formation of the cell aggregates can be predicted when given a physiologic shear rate.

public 02:29:55

Leonid Berlyand : Flux norm approach to finite-dimensional homogenization approximation with non-separated scales and high contrast

  -   Applied Math and Analysis ( 164 Views )

PDF Abstract
Classical homogenization theory deals with mathematical models of strongly inhomogeneous media described by PDEs with rapidly oscillating coefficients of the form A(x/\epsilon), \epsilon → 0. The goal is to approximate this problem by a homogenized (simpler) PDE with slowly varying coefficients that do not depend on the small parameter \epsilon. The original problem has two scales: fine O(\epsilon) and coarse O(1), whereas the homogenized problem has only a coarse scale. The homogenization of PDEs with periodic or ergodic coefficients and well-separated scales is now well understood. In a joint work with H. Owhadi (Caltech) we consider the most general case of arbitrary L∞ coefficients, which may contain infinitely many scales that are not necessarily well-separated. Specifically, we study scalar and vectorial divergence-form elliptic PDEs with such coefficients. We establish two finite-dimensional approximations to the solutions of these problems, which we refer to as finite-dimensional homogenization approximations. We introduce a flux norm and establish the error estimate in this norm with an explicit and optimal error constant independent of the contrast and regularity of the coefficients. A proper generalization of the notion of cell problems is the key technical issue in our consideration. The results described above are obtained as an application of the transfer property as well as a new class of elliptic inequalities which we conjecture. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization. These inequalities are closely related to the issue of H^2 regularity of solutions of elliptic non-divergent PDEs with non smooth coefficients.