Joe Kileel : Inverse Problems, Imaging, and Tensor Decomposition
- Applied Math and Analysis ( 374 Views )Perspectives from computational algebra and numerical optimization are brought to bear on a scientific application and a data science application. In the first part of the talk, I will discuss cryo-electron microscopy (cryo-EM), an imaging technique to determine the 3-D shape of macromolecules from many noisy 2-D projections, recognized by the 2017 Chemistry Nobel Prize. Mathematically, cryo-EM presents a particularly rich inverse problem, with unknown orientations, extreme noise, big data and conformational heterogeneity. In particular, this motivates a general framework for statistical estimation under compact group actions, connecting information theory and group invariant theory. In the second part of the talk, I will discuss tensor rank decomposition, a higher-order variant of PCA broadly applicable in data science. A fast algorithm is introduced and analyzed, combining ideas of Sylvester and the power method.
Ben Krause : Dimension independent bounds for the spherical maximal function on products of finite groups
- Applied Math and Analysis ( 272 Views )The classical Hardy-Littlewood maximal operators (averaging over families of Euclidean balls and cubes) are known to satisfy L^p bounds that are independent of dimension. This talk will extend these results to spherical maximal functions acting on Cartesian products of cyclic groups equipped with the Hamming metric.
Xiaochuan Tian : Analysis and computation of nonlocal models
- Applied Math and Analysis ( 249 Views )Nonlocal models are experiencing a firm upswing recently as more realistic alternatives to the conventional local models for studying various phenomena from physics and biology to materials and social sciences. In this talk, I will describe our recent effort in taming the computational challenges for nonlocal models. I will first highlight a family of numerical schemes -- the asymptotically compatible schemes -- for nonlocal models that are robust with the modeling parameter approaching an asymptotic limit. Second, fast algorithms will be presented to reduce the high computational cost from the numerical implementation of the nonlocal operators. Although new nonlocal models have been gaining popularity in various applications, they often appear as phenomenological models, such as the peridynamics model in fracture mechanics. Here we will try to provide better perspectives of the origin of nonlocality from multiscale modeling and homogenization, which in turn may help the development of more effective numerical methods for homogenization.
Min Kang : Tropically Linear Interface Growth Models
- Applied Math and Analysis ( 249 Views )We first discuss a general method to derive macroscopic laws from certain microscopic interactions that can be applied to a large class of particle systems. In particular we consider a broad class of systems that are linear in a special algebra, so-called tropical algebra. Some natural connections among the scaling limits of these random systems, the solutions to specific partial differential equations (Hamilton-Jacobi type) and combinatorial optimization problems have been noticed. If time allows, we further discuss a useful application of the variational formula (microscopic version of Hopf-Lax formula) to a well-known interacting particle system, totally asymmetric simple exclusion process.
Wuchen Li : Mean-Field Games for Scalable Computation and Diverse Applications
- Applied Math and Analysis ( 235 Views )Mean field games (MFGs) study strategic decision-making in large populations where individual players interact via specific mean-field quantities. They have recently gained enormous popularity as powerful research tools with vast applications. For example, the Nash equilibrium of MFGs forms a pair of PDEs, which connects and extends variational optimal transport problems. This talk will present recent progress in this direction, focusing on computational MFG and engineering applications in robotics path planning, pandemics control, and Bayesian/AI sampling algorithms. This is based on joint work with the MURI team led by Stanley Osher (UCLA).
Linfeng Zhang : Neural network models and concurrent learning schemes for multi-scale molecular modelling
- Applied Math and Analysis ( 233 Views )We will discuss two issues in the context of applying deep learning methods to multi-scale molecular modelling: 1) how to construct symmetry-preserving neural network models for scalar and tensorial quantities; 2) how to efficiently explore the relevant configuration space and generate a minimal set of training data. We show that by properly addressing these two issues, one can systematically develop deep learning-based models for electronic properties and interatomic and coarse-grained potentials, which greatly boost the ability of ab-initio molecular dynamics; one can also develop enhanced sampling techniques that are capable of using tens or even hundreds of collective variables to drive phase transition and accelerate structure search
Yian Ma : Bridging MCMC and Optimization
- Applied Math and Analysis ( 223 Views )In this talk, I will discuss three ingredients of optimization theory in the context of MCMC: Non-convexity, Acceleration, and Stochasticity.
I will focus on a class of non-convex objective functions arising from mixture models. For that class of objective functions, I will demonstrate that the computational complexity of a simple MCMC algorithm scales linearly with the model dimension, while optimization problems are NP-hard.
I will then study MCMC algorithms as optimization over the KL-divergence in the space of measures. By incorporating a momentum variable, I will discuss an algorithm which performs "accelerated gradient descent" over the KL-divergence. Using optimization-like ideas, a suitable Lyapunov function is constructed to prove that an accelerated convergence rate is obtained.
Finally, I will present a general recipe for constructing stochastic gradient MCMC algorithms that translates the task of finding a valid sampler into one of choosing two matrices. I will then describe how stochastic gradient MCMC algorithms can be applied to applications involving temporally dependent data, where the challenge arises from the need to break the dependencies when considering minibatches of observations.
Cynthia Vinzant : Matroids, log-concavity, and expanders
- Applied Math and Analysis ( 214 Views )Matroids are combinatorial objects that model various types of independence. They appear several fields mathematics, including graph theory, combinatorial optimization, and algebraic geometry. In this talk, I will introduce the theory of matroids along with the closely related class of polynomials called strongly log-concave polynomials. Strong log-concavity is a functional property of a real multivariate polynomial that translates to useful conditions on its coefficients. Discrete probability distributions defined by these coefficients inherit several of these nice properties. I will discuss the beautiful real and combinatorial geometry underlying these polynomials and describe applications to random walks on the faces of simplicial complexes. Consequences include proofs of Mason's conjecture that the sequence of numbers of independent sets of a matroid is ultra log-concave and the Mihail-Vazirani conjecture that the basis exchange graph of a matroid has expansion at least one. This is based on joint work with Nima Anari, Kuikui Liu, and Shayan Oveis Gharan.
Matthew Jacobs : A fast approach to optimal transport: the back-and-forth method
- Applied Math and Analysis ( 208 Views )Given two probability measures and a transportation cost, the optimal transport problem asks to find the most cost efficient way to transport one measure to the other. Since its introduction in 1781 by Gaspard Monge, the optimal transport problem has found applications in logistics, economics, physics, PDEs, and more recently data science. However, despite sustained attention from the numerics community, solving optimal transport problems has been a notoriously difficult task. In this talk I will introduce the back-and-forth method, a new algorithm to efficiently solve the optimal transportation problem for a general class of strictly convex transportation costs. Given two probability measures supported on a discrete grid with n points, the method computes the optimal map in O(n log(n)) operations using O(n) storage space. As a result, the method can compute highly accurate solutions to optimal transportation problems on spatial grids as large as 4096 x 4096 and 384 x 384 x 384 in a matter of minutes. If time permits, I will demonstrate an extension of the algorithm to the simulation of a class of gradient flows. This talk is joint work with Flavien Leger.
Mark Stern : Monotonicity and Betti Number Bounds
- Applied Math and Analysis ( 200 Views )In this talk I will discuss the application of techniques initially developed to study singularities of Yang Mill's fields and harmonic maps to obtain Betti number bounds, especially for negatively curved manifolds.
Suncica Canic : Mathematical modeling for cardiovascular stenting
- Applied Math and Analysis ( 193 Views )The speaker will talk about several projects that are taking place in an interdisciplinary endeavor between the researchers in the Mathematics Department at the University of Houston, the Texas Heart Institute, Baylor College of Medicine, the Mathematics Department at the University of Zagreb, and the Mathematics Department of the University of Lyon 1. The projects are related to non-surgical treatment of aortic abdominal aneurysm and coronary artery disease using endovascular prostheses called stents and stent-grafts. Through a collaboration between mathematicians, cardiovascular specialists and engineers we have developed a novel mathematical model to study blood flow in compliant (viscoelastic) arteries treated with stents and stent-grafts. The mathematical tools used in the derivation of the effective, reduced equations utilize asymptotic analysis and homogenization methods for porous media flows. The existence of a unique solution to the resulting fluid-structure interaction model is obtained by using novel techniques to study systems of mixed, hyperbolic-parabolic type. A numerical method, based on the finite element approach, was developed, and numerical solutions were compared with the experimental measurements. Experimental measurements based on ultrasound and Doppler methods were performed at the Cardiovascular Research Laboratory located at the Texas Heart Institute. Excellent agreement between the experiment and the numerical solution was obtained. This year marks a giant step forward in the development of medical devices and in the development of the partnership between mathematics and medicine: the FDA (the United States Food and Drug Administration) is getting ready to, for the first time, require mathematical modeling and numerical simulations to be used in the development of peripheral vascular devices. The speaker acknowledges research support from the NSF, NIH, and Texas Higher Education Board, and donations from Medtronic Inc. and Kent Elastomer Inc.
Casey Rodriguez : The Radiative Uniqueness Conjecture for Bubbling Wave Maps
- Applied Math and Analysis ( 191 Views )One of the most fundamental questions in partial differential equations is that of regularity and the possible breakdown of solutions. We will discuss this question for solutions to a canonical example of a geometric wave equation; energy critical wave maps. Break-through works of Krieger-Schlag-Tataru, Rodnianski-Sterbenz and Rapha Ì?el-Rodnianski produced examples of wave maps that develop singularities in finite time. These solutions break down by concentrating energy at a point in space (via bubbling a harmonic map) but have a regular limit, away from the singular point, as time approaches the final time of existence. The regular limit is referred to as the radiation. This mechanism of breakdown occurs in many other PDE including energy critical wave equations, Schro Ì?dinger maps and Yang-Mills equations. A basic question is the following: â?¢ Can we give a precise description of all bubbling singularities for wave maps with the goal of finding the natural unique continuation of such solutions past the singularity? In this talk, we will discuss recent work (joint with J. Jendrej and A. Lawrie) which is the first to directly and explicitly connect the radiative component to the bubbling dynamics by constructing and classifying bubbling solutions with a simple form of prescribed radiation. Our results serve as an important first step in formulating and proving the following Radiative Uniqueness Conjecture for a large class of wave maps: every bubbling solution is uniquely characterized by itâ??s radiation, and thus, every bubbling solution can be uniquely continued past blow-up time while conserving energy.
Wenjun Ying : Recent developments of the kernel-free boundary integral method
- Applied Math and Analysis ( 188 Views )The kernel-free boundary integral method is a Cartesian grid based method for solving elliptic partial differential equations (PDEs). It solves elliptic PDEs in the framework of boundary integral equations (BIEs). The method evaluates boundary and volume integrals by solving equivalent simple interface problems on Cartesian grids. It takes advantages of the well-conditioning properties of the BIE formulation, the convenience of grid generation with Cartesian grids and the availability of fast and efficient elliptic solvers for the simple interface problems. In this talk, I will present recent developments of the method for the reaction-diffusion equations in computational cardiology, the nonlinear Poisson-Boltzmann equation in biophysics, the Stokes equation in fluid dynamics as well as some free boundary and moving interface problems.
Xiaochun Tian : Interface problems with nonlocal diffusion
- Applied Math and Analysis ( 184 Views )Nonlocal continuum models are in general integro-differential equations in place of the conventional partial differential equations. While nonlocal models show their effectiveness in modeling a number of anomalous and singular processes in physics and material sciences, they also come with increased difficulty in numerical analysis with nonlocality involved. In the first part of this talk, I will discuss nonlocal-to-local coupling techniques so as to improve the computational efficiency of using nonlocal models. This also motivates the development of new mathematical results -- for instance, a new trace theorem that extends the classical results. In the second part of this talk, I will describe our recent effort in computing a nonlocal interface problem arising from segregation of two species with high competition. One species moves according to the classical diffusion and the other adopts a nonlocal strategy. A novel iterative scheme will be presented that constructs a sequence of supersolutions shown to be convergent to the viscosity solution of the interface problem.
Hongkai Zhao : Approximate Separability of Greens Function for Helmholtz Equation in the High Frequency Limit
- Applied Math and Analysis ( 183 Views )Approximate separable representations of GreenÂ?s functions for differential operators is a basic and important question in the analysis of differential equations, the development of efficient numerical algorithms and imaging. Being able to approximate a GreenÂ?s function as a sum with few separable terms is equivalent to low rank properties of corresponding numerical solution operators. This will allow for matrix compression and fast solution techniques. Green's functions for coercive elliptic differential operators have been shown to be highly separable and the resulting low rank property for discretized system was explored to develop efficient numerical algorithms. However, the case of Helmholtz equation in the high frequency limit is more challenging both mathematically and numerically. We introduce new tools based on the study of relation between two GreenÂ?s functions with different source points and a tight dimension estimate for the best linear subspace approximating a set of almost orthogonal vectors to prove new lower bounds for the number of terms in the representation for the Green's function for Helmholtz operator in the high frequency limit. Upper bounds are also derived. We give explicit sharp estimates for cases that are common in practice and present numerical examples. This is a joint work with Bjorn Engquist.
Wenjun Ying : A Fast Accurate Boundary Integral Method for the Laplace Equation
- Applied Math and Analysis ( 182 Views )Boundary value and interface problems for the Laplace equation are often solved by boundary integral methods due to the reduction of dimensionality and its flexibility in domain geometry. However, there are two well-known computational issues with the boundary integral method: (a) evaluation of boundary integrals at points close to domain boundaries usually has low order accuracy; (b) the method typically yields dense coefficient matrices in the resulting discrete systems, which makes the matrix vector multiplication very expensive when the size of the system is very large. In this talk, I will describe a fast accurate boundary integral method for the Laplace boundary value and interface problems. The algorithm uses the high order accurate method proposed by (Beale and Lai 2001) for evaluation of the boundary integrals and applies the fast multipole method for the dense matrix vector multiplication. Numerical results demonstrating the efficiency and accuracy of the method will be presented.
Dan Hu : Optimization, Adaptation, and Initiation of Biological Transport Networks
- Applied Math and Analysis ( 181 Views )Blood vessel systems and leaf venations are typical biological transport networks. The energy consumption for such a system to perform its biological functions is determined by the network structure. In the first part of this talk, I will discuss the optimized structure of vessel networks, and show how the blood vessel system adapts itself to an optimized structure. Mathematical models are used to predict pruning vessels in the experiments of zebra fish. In the second part, I will discuss our recent modeling work on the initiation process of transport networks. Simulation results are used to illustrate how a tree-like structure is obtained from a continuum adaptation equation system, and how loops can exist in our model. Possible further application of this model will also be discussed.
Xiaoqian Xu : Suppression of chemotactic explosion by mixing
- Applied Math and Analysis ( 178 Views )Chemotaxis plays a crucial role in a variety of processes in biology and ecology. One of the most studied PDE models of chemotaxis is given by Keller-Segel equation, which describes a population density of bacteria or mold which attract chemically to substance they secrete. However, solution of Keller-Segel equation can exhibit dramatic collapsing behavior. In other words, there exist initial data leading to finite time blow up. In this talk, we will discuss the possible effects resulting from interaction of chemotactic and fluid transport processes, namely we will consider the Keller-Segel equation with additional advection term modeling ambient fluid flow. We will prove that the presence of fluid can prevent the singularity formation. We will discuss two classes of flows that have the explosion arresting property. Both classes are known as very efficient mixers.
Peter Smereka : The Gaussian Wave Packet Transform: Efficient Computation of the Semi-Classical Limit of the Schroedinger Equation
- Applied Math and Analysis ( 170 Views )An efficient method for simulating the propagation of a localized solution of the Schroedinger equation near the semiclassical limit is presented. The method is based on a time dependent transformation closely related to Gaussian wave packets and yields a Schroedinger type equation that is very ammenable to numerical solution in the semi-classical limit. The wavefunction can be reconstructed from the transformed wavefunction whereas expectation values can easily be evaluated directly from the transformed wavefunction. The number of grid points needed per degree of freedom is small enough that computations in dimensions of up to 4 or 5 are feasible without the use of any basis thinning procedures. This is joint work with Giovanni Russo.
Mark Levi : Arnold diffusion in physical examples
- Applied Math and Analysis ( 170 Views )Arnold diffusion is the phenomenon of loss of stability of a completely integrable Hamiltonian system: an arbitrarily small perturbation can cause action to change along some orbit by a finite amount. Arnold produced the first example of diffusion and gave an outline of the proof. After a brief overview of related results I will describe the simplest example of Arnold diffusion which we found recently with Vadim Kaloshin. We consider geodesics on the 3-torus, or equivalently rays in a periodic optical medium in $ {\mathbb R} ^3 $ (or equivalently a point mass in a periodic potential in $ {\mathbb R} ^3 $.) Arnold diffusion has a transparent intuitive explanation and a simple proof. Resonances and the so-called ``whiskered tori" acquire a clear geometrical interpretation as well. I will conclude with a sketch of a different but related manifestation of Arnold diffusion as acceleration of a particle by a pulsating potential. This is joint work with Vadim Kaloshin.
Jim Nolen : Asymptotic Spreading of Reaction-Diffusion Fronts in Random Media
- Applied Math and Analysis ( 169 Views )Some reaction-advection-diffusion equations admit traveling wave solutions; these are simple models of a combustion reaction spreading with constant speed. Even in a random medium, solutions to the initial value problem may develop fronts propagating with a well-defined asymptotic speed. First, I will describe this behavior when the nonlinearity is the Kolmogorov-Petrovsky-Piskunov (KPP) type nonlinearity and the randomness comes from a prescribed random drift (a simple model of turbulent combustion). Next, I will describe propagation of fronts when the nonlinearity is a random ignition-type nonlinearity. In the latter case, there exist special solutions that generalize the notion of a traveling wave in the random setting.
Ying Cui : Modern ``Non-Optimization for Data Science
- Applied Math and Analysis ( 169 Views )We have witnessed a lot of exciting development of data science in recent years. From the perspective of optimization, many modern data-science problems involve some basic ``nonâ??â??-properties that lack systematic treatment by the current approaches for the sake of the computation convenience. These non-properties include the coupling of the non-convexity, non-differentiability and non-determinism. In this talk, we present rigorous computational methods for solving two typical non-problems: the piecewise linear regression and the feed-forward deep neural network. The algorithmic framework is an integration of the first order non-convex majorization-minimization method and the second order non-smooth Newton methods. Numerical experiments demonstrate the effectiveness of our proposed approach. Contrary to existing methods for solving non-problems which provide at best very weak guarantees on the computed solutions obtained in practical implementation, our rigorous mathematical treatment aims to understand properties of these computed solutions with reference to both the empirical and the population risk minimizations. This is based on joint work with Jong-Shi Pang, Bodhisattva Sen and Ziyu He.
Aaron Hoffman : Existence and Orbital Stability for Counterpropagating Waves in the FPU model
- Applied Math and Analysis ( 165 Views )The Fermi-Pasta-Ulam (FPU) model of coupled anharmonic oscillators has long been of interest in nonlinear science. It is only recently (Friesecke and Wattis 1994, Frieseck and Pego 1999-2003, and Mizumachi (submitted)) that the existence and stability of solitary waves in FPU has been completely understood. In light of the fact that the Korteweg-deVries (KdV) equation may recovered as a long wave limit of FPU and that the theory of soliton interaction is both beautiful and completely understood in KdV, it is of interest to describe the interaction of two colliding solitary waves in the FPU model. We show that the FPU model contains an open set of solutions which remain close to the linear sum of two long wave low amplitude solitions as time goes to either positive or negative infinity.
Lucy Zhang : Modeling and Simulations of Fluid and Deformable-Structure Interactions in Bio-Mechanical Systems
- Applied Math and Analysis ( 164 Views )Fluid-structure interactions exist in many aspects of our daily lives. Some biomedical engineering examples are blood flowing through a blood vessel and blood pumping in the heart. Fluid interacting with moving or deformable structures poses more numerical challenges for its complexity in dealing with transient and simultaneous interactions between the fluid and solid domains. To obtain stable, effective, and accurate solutions is not trivial. Traditional methods that are available in commercial software often generate numerical instabilities.
In this talk, a novel numerical solution technique, Immersed Finite Element Method (IFEM), is introduced for solving complex fluid-structure interaction problems in various engineering fields. The fluid and solid domains are fully coupled, thus yield accurate and stable solutions. The variables in the two domains are interpolated via a delta function that enables the use of non-uniform grids in the fluid domain, which allows the use of arbitrary geometry shapes and boundary conditions. This method extends the capabilities and flexibilities in solving various biomedical, traditional mechanical, and aerospace engineering problems with detailed and realistic mechanics analysis. Verification problems will be shown to validate the accuracy and effectiveness of this numerical approach. Several biomechanical problems will be presented: 1) blood flow in the left atrium and left atrial appendage which is the main source of blood in patients with atrial fibrillation. The function of the appendage is determined through fluid-structure interaction analysis, 2) examine blood cell and cell interactions under different flow shear rates. The formation of the cell aggregates can be predicted when given a physiologic shear rate.
Leonid Berlyand : Flux norm approach to finite-dimensional homogenization approximation with non-separated scales and high contrast
- Applied Math and Analysis ( 164 Views )PDF Abstract
Classical homogenization theory deals with mathematical models of strongly
inhomogeneous media described by PDEs with rapidly oscillating coefficients
of the form A(x/\epsilon), \epsilon → 0. The goal is to approximate this problem by a
homogenized (simpler) PDE with slowly varying coefficients that do not depend
on the small parameter \epsilon. The original problem has two scales: fine
O(\epsilon) and coarse O(1), whereas the homogenized problem has only a coarse
scale.
The homogenization of PDEs with periodic or ergodic coefficients and
well-separated scales is now well understood. In a joint work with H. Owhadi
(Caltech) we consider the most general case of arbitrary L∞ coefficients,
which may contain infinitely many scales that are not necessarily well-separated.
Specifically, we study scalar and vectorial divergence-form elliptic PDEs with
such coefficients. We establish two finite-dimensional approximations to the
solutions of these problems, which we refer to as finite-dimensional homogenization
approximations. We introduce a flux norm and establish the error
estimate in this norm with an explicit and optimal error constant independent
of the contrast and regularity of the coefficients. A proper generalization of
the notion of cell problems is the key technical issue in our consideration.
The results described above are obtained as an application of the transfer
property as well as a new class of elliptic inequalities which we conjecture.
These inequalities play the same role in our approach as the div-curl lemma
in classical homogenization. These inequalities are closely related to the issue
of H^2 regularity of solutions of elliptic non-divergent PDEs with non smooth
coefficients.
Vita Rutka : EJIIM for Stationary Stokes Flow (Boundary Value Problems)
- Applied Math and Analysis ( 164 Views )The Explicit Jump Immersed Interface Method (EJIIM) is a finite difference method for elliptic partial differential equations that, like all Immersed Interface Methods, works on a regular grid in spite of non-grid aligned discontinuities in equation parameters and solution. The specific idea is to introduce jumps in function and its derivatives explicitely as additional variables. We present a finite difference based EJIIM for the stationary Stokes flow in saddle point formulation. Challenges related to staggered grid, fast Stokes solver and non-simply connected domains will be discussed.
Svetlana Tlupova : Numerical Solutions of Coupled Stokes and Darcy Flows Based on Boundary Integrals
- Applied Math and Analysis ( 163 Views )Coupling between free fluid flow and flow through porous media is important in many industrial applications, such as filtration, underground water flow in hydrology, oil recovery in petroleum engineering, fluid flow through body tissues in biology, to name a few.
Stokes flows appear in many applications where the fluid viscosity is high and/or the velocity and length scales are small. The flow through a porous medium can be described by Darcy's law. A region that contains both requires a careful coupling of these different systems at the interface through appropriate boundary conditions.
Our objective is to develop a method based on the boundary integral formulation for computing the fluid/porous medium problem with higher accuracy using fundamental solutions of Stokes and Darcy's equations. We regularize the kernels to remove the singularity for stability of numerical calculations and eliminate the largest error for higher accuracy.
Alun Lloyd : Drug Resistance in Acute Viral Infections
- Applied Math and Analysis ( 163 Views )A wide range of viral infections, such as HIV or influenza, can now be treated using antiviral drugs. Since viruses can evolve rapidly, the emergence and spread of drug resistant virus strains is a major concern. We shall describe within and between host models that can help indicate settings in which resistance is more or less likely to be problematic. In particular, we shall discuss the potential for the emergence of resistance in the context of human rhinovirus infection, an acute infection that is responsible for a large fraction of 'common cold' cases.
Paul Tupper : The Relation Between Shadowing and Approximation in Distribution
- Applied Math and Analysis ( 161 Views )In computational physics, molecular dynamics refers to the computer simulation of a material at the atomic level. I will consider classical deterministic molecular dynamics in which large Hamiltonian systems of ordinary differential equations are used, though many of the same issues arise with other models. Given its scientific importance there is very little rigorous justification of molecular dynamics. From the viewpoint of numerical analysis it is surprising that it works at all. The problem is that individual trajectories computed by molecular dynamics are accurate for only small time intervals, whereas researchers trust the results over very long time intervals. It has been conjectured that molecular dynamics trajectories are accurate over long time intervals in some weak statistical sense. Another conjecture is that numerical trajectories satisfy the shadowing property: that they are close over long time intervals to exact trajectories with different initial conditions. I will explain how these two views are actually equivalent to each other, after we suitably modify the concept of shadowing.