Quicklists
public 01:34:50

Suncica Canic : Mathematical modeling for cardiovascular stenting

  -   Applied Math and Analysis ( 193 Views )

The speaker will talk about several projects that are taking place in an interdisciplinary endeavor between the researchers in the Mathematics Department at the University of Houston, the Texas Heart Institute, Baylor College of Medicine, the Mathematics Department at the University of Zagreb, and the Mathematics Department of the University of Lyon 1. The projects are related to non-surgical treatment of aortic abdominal aneurysm and coronary artery disease using endovascular prostheses called stents and stent-grafts. Through a collaboration between mathematicians, cardiovascular specialists and engineers we have developed a novel mathematical model to study blood flow in compliant (viscoelastic) arteries treated with stents and stent-grafts. The mathematical tools used in the derivation of the effective, reduced equations utilize asymptotic analysis and homogenization methods for porous media flows. The existence of a unique solution to the resulting fluid-structure interaction model is obtained by using novel techniques to study systems of mixed, hyperbolic-parabolic type. A numerical method, based on the finite element approach, was developed, and numerical solutions were compared with the experimental measurements. Experimental measurements based on ultrasound and Doppler methods were performed at the Cardiovascular Research Laboratory located at the Texas Heart Institute. Excellent agreement between the experiment and the numerical solution was obtained. This year marks a giant step forward in the development of medical devices and in the development of the partnership between mathematics and medicine: the FDA (the United States Food and Drug Administration) is getting ready to, for the first time, require mathematical modeling and numerical simulations to be used in the development of peripheral vascular devices. The speaker acknowledges research support from the NSF, NIH, and Texas Higher Education Board, and donations from Medtronic Inc. and Kent Elastomer Inc.

public 01:09:47

Casey Rodriguez : The Radiative Uniqueness Conjecture for Bubbling Wave Maps

  -   Applied Math and Analysis ( 191 Views )

One of the most fundamental questions in partial differential equations is that of regularity and the possible breakdown of solutions. We will discuss this question for solutions to a canonical example of a geometric wave equation; energy critical wave maps. Break-through works of Krieger-Schlag-Tataru, Rodnianski-Sterbenz and Rapha ̀?el-Rodnianski produced examples of wave maps that develop singularities in finite time. These solutions break down by concentrating energy at a point in space (via bubbling a harmonic map) but have a regular limit, away from the singular point, as time approaches the final time of existence. The regular limit is referred to as the radiation. This mechanism of breakdown occurs in many other PDE including energy critical wave equations, Schro ̀?dinger maps and Yang-Mills equations. A basic question is the following: â?¢ Can we give a precise description of all bubbling singularities for wave maps with the goal of finding the natural unique continuation of such solutions past the singularity? In this talk, we will discuss recent work (joint with J. Jendrej and A. Lawrie) which is the first to directly and explicitly connect the radiative component to the bubbling dynamics by constructing and classifying bubbling solutions with a simple form of prescribed radiation. Our results serve as an important first step in formulating and proving the following Radiative Uniqueness Conjecture for a large class of wave maps: every bubbling solution is uniquely characterized by itâ??s radiation, and thus, every bubbling solution can be uniquely continued past blow-up time while conserving energy.

public 01:34:32

Ioannis Kevrekidis : No Equations, No Variables, No Parameters, No Space, No Time -- Data, and the Crystal Ball Modeling of Complex/Multiscale Systems

  -   Applied Math and Analysis ( 184 Views )

Obtaining predictive dynamical equations from data lies at the heart of science and engineering modeling, and is the linchpin of our technology. In mathematical modeling one typically progresses from observations of the world (and some serious thinking!) first to selection of variables, then to equations for a model, and finally to the analysis of the model to make predictions. Good mathematical models give good predictions (and inaccurate ones do not) --- but the computational tools for analyzing them are the same: algorithms that are typically operating on closed form equations.
While the skeleton of the process remains the same, today we witness the development of mathematical techniques that operate directly on observations --- data, and appear to circumvent the serious thinking that goes into selecting variables and parameters and deriving accurate equations. The process then may appear to the user a little like making predictions by "looking into a crystal ball". Yet the "serious thinking" is still there and uses the same --- and some new --- mathematics: it goes into building algorithms that "jump directly" from data to the analysis of the model (which is now not available in closed form) so as to make predictions. Our work here presents a couple of efforts that illustrate this "new" path from data to predictions. It really is the same old path, but it is traveled by new means.

public 01:14:39

Lucy Zhang : Modeling and Simulations of Fluid and Deformable-Structure Interactions in Bio-Mechanical Systems

  -   Applied Math and Analysis ( 164 Views )

Fluid-structure interactions exist in many aspects of our daily lives. Some biomedical engineering examples are blood flowing through a blood vessel and blood pumping in the heart. Fluid interacting with moving or deformable structures poses more numerical challenges for its complexity in dealing with transient and simultaneous interactions between the fluid and solid domains. To obtain stable, effective, and accurate solutions is not trivial. Traditional methods that are available in commercial software often generate numerical instabilities.

In this talk, a novel numerical solution technique, Immersed Finite Element Method (IFEM), is introduced for solving complex fluid-structure interaction problems in various engineering fields. The fluid and solid domains are fully coupled, thus yield accurate and stable solutions. The variables in the two domains are interpolated via a delta function that enables the use of non-uniform grids in the fluid domain, which allows the use of arbitrary geometry shapes and boundary conditions. This method extends the capabilities and flexibilities in solving various biomedical, traditional mechanical, and aerospace engineering problems with detailed and realistic mechanics analysis. Verification problems will be shown to validate the accuracy and effectiveness of this numerical approach. Several biomechanical problems will be presented: 1) blood flow in the left atrium and left atrial appendage which is the main source of blood in patients with atrial fibrillation. The function of the appendage is determined through fluid-structure interaction analysis, 2) examine blood cell and cell interactions under different flow shear rates. The formation of the cell aggregates can be predicted when given a physiologic shear rate.

public 02:29:55

Leonid Berlyand : Flux norm approach to finite-dimensional homogenization approximation with non-separated scales and high contrast

  -   Applied Math and Analysis ( 164 Views )

PDF Abstract
Classical homogenization theory deals with mathematical models of strongly inhomogeneous media described by PDEs with rapidly oscillating coefficients of the form A(x/\epsilon), \epsilon → 0. The goal is to approximate this problem by a homogenized (simpler) PDE with slowly varying coefficients that do not depend on the small parameter \epsilon. The original problem has two scales: fine O(\epsilon) and coarse O(1), whereas the homogenized problem has only a coarse scale. The homogenization of PDEs with periodic or ergodic coefficients and well-separated scales is now well understood. In a joint work with H. Owhadi (Caltech) we consider the most general case of arbitrary L∞ coefficients, which may contain infinitely many scales that are not necessarily well-separated. Specifically, we study scalar and vectorial divergence-form elliptic PDEs with such coefficients. We establish two finite-dimensional approximations to the solutions of these problems, which we refer to as finite-dimensional homogenization approximations. We introduce a flux norm and establish the error estimate in this norm with an explicit and optimal error constant independent of the contrast and regularity of the coefficients. A proper generalization of the notion of cell problems is the key technical issue in our consideration. The results described above are obtained as an application of the transfer property as well as a new class of elliptic inequalities which we conjecture. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization. These inequalities are closely related to the issue of H^2 regularity of solutions of elliptic non-divergent PDEs with non smooth coefficients.

public 01:14:39

Elizabeth L. Bouzarth : Modeling Biologically Inspired Fluid Flow Using RegularizedSingularities and Spectral Deferred Correction Methods

  -   Applied Math and Analysis ( 157 Views )

The motion of primary nodal cilia present in embryonic development resembles that of a precessing rod. Implementing regularized singularities to model this fluid flow numerically simulates a situation for which colleagues have exact mathematical solutions and experimentalists have corresponding laboratory studies on both the micro- and macro-scales. Stokeslets are fundamental solutions to the Stokes equations, which act as external point forces when placed in a fluid. By strategically distributing regularized Stokeslets in a fluid domain to mimic an immersed boundary (e.g., cilium), one can compute the velocity and trajectory of the fluid at any point of interest. The simulation can be adapted to a variety of situations including passive tracers, rigid bodies and numerous rod structures in a fluid flow generated by a rod, either rotating around its center or its tip, near a plane. The exact solution allows for careful error analysis and the experimental studies provide new applications for the numerical model. Spectral deferred correction methods are used to alleviate time stepping restrictions in trajectory calculations. Quantitative and qualitative comparisons to theory and experiment have shown that a numerical simulation of this nature can generate insight into fluid systems that are too complicated to fully understand via experiment or exact numerical solution independently.

public 01:24:58

Ju Sun : When Are Nonconvex Optimization Problems Not Scary?

  -   Applied Math and Analysis ( 156 Views )

Many problems arising from scientific and engineering applications can be naturally formulated as optimization problems, most of which are nonconvex. For nonconvex problems, obtaining a local minimizer is computationally hard in theory, never mind the global minimizer. In practice, however, simple numerical methods often work surprisingly well in finding high-quality solutions for specific problems at hand.

In this talk, I will describe our recent effort in bridging the mysterious theory-practice gap for nonconvex optimization. I will highlight a family of nonconvex problems that can be solved to global optimality using simple numerical methods, independent of initialization. This family has the characteristic global structure that (1) all local minimizers are global, and (2) all saddle points have directional negative curvatures. Problems lying in this family cover various applications across machine learning, signal processing, scientific imaging, and more. I will focus on two examples we worked out: learning sparsifying bases for massive data and recovery of complex signals from phaseless measurements. In both examples, the benign global structure allows us to derive geometric insights and computational results that are inaccessible from previous methods. In contrast, alternative approaches to solving nonconvex problems often entail either expensive convex relaxation (e.g., solving large-scale semidefinite programs) or delicate problem-specific initializations.

Completing and enriching this framework is an active research endeavor that is being undertaken by several research communities. At the end of the talk, I will discuss open problems to be tackled to move forward.

public 01:34:49

Andrew Christlieb : A high order adaptive mesh refinement algorithm for hyperbolic conservation laws based on weighted essentially non-oscillatory methods

  -   Applied Math and Analysis ( 154 Views )

In this work, we combine the adaptive mesh refinement (AMR) framework with high order finite difference weighted essentially non-oscillatory (WENO) method in space and TVD Runge-Kutta (RK) method in time (WENO-RK) for hyperbolic conservation laws. Our goal is to realize mesh adaptivity in the AMR framework, while maintaining very high (higher than second) order accuracy of the WENO-RK method in the finite difference setting. To maintain high order accuracy, we use high order prolongation in both space (WENO interpolation) and time (Hermite interpolation) from the coarse to find grid, and at ghost points. The resulting scheme is high order accuracy, robust and efficient, due to the mesh adaptivity and has high order accuracy in both space and time. We have experimented the third and fifth order AMR-finite difference WENO-RK schemes. The accuracy of the scheme is demonstrated by applying the method to several smooth test problems, and the quality and efficiency are demonstrated by applying the method to the shallow water and Euler equations with different challenging initial conditions. From our numerical experiment, we conclude a significant improvement of the fifth order AMR - WENO scheme over the third order one, not only in accuracy for smooth problems, but also in its ability in resolving complicated solution structures, which we think is due to the very low numerical diffusion of high order schemes. This work is in collaboration with Dr. Chaopeng Shen and Professor Jing-Mei Qiu.